
Distilling the Ingredients of
P2P Live Streaming Systems

Roy Friedman∗, Alexander Libov∗ Ymir Vigfusson†‡
∗Computer Science Department †Dept. of Math&CS ‡School of Computer Science

Technion - Israel Institute of Technology Emory University Reykjavik University
Haifa 32000, Israel Atlanta GA 30322, USA Reykjavik, Iceland

{roy,alibov}@cs.technion.ac.il ymir@mathcs.emory.edu

Abstract—

Peer-to-peer live streaming systems involve complex
engineering and are difficult to test and to deploy. To
cut through the complexity, we advocate such systems be
designed by composing ingredients: a novel abstraction
denoting the smallest interoperable units of code that
each express a single design choice. We present a system,
STREAMAID, that provides tools for designing protocols in
terms of ingredients, systematically testing the impact of
every design decision in a simulator, and deploying them
in a wide-area testbed such as PlanetLab for evaluation.
We show how to decompose popular P2P live streaming
systems, such as CoolStreaming, BitTorrent Live and
others, into ingredients and how STREAMAID can help
optimize and adapt these protocols. By experimenting with
the essential building blocks of which P2P live streaming
protocols are comprised, we gain a unique vantage point of
their relative quality, their bottlenecks and their potential
for future improvement.

I. INTRODUCTION
Online video services will be used by nearly two

billion Internet users by 2018 according to projections,
consuming over 79% of all Internet traffic [1]. While
video-on-demand is the major constituent of Internet
video, the popularity of live video streams has been
growing rapidly, with the number of global IPTV
subscribers now exceeding 100 million [2], and live
streaming platforms such as Twitch.tv attracting more
than 45 million users per month [3]. Unfortunately, the
technology for Internet live streaming is still far from
reaching the maturity of traditional broadcast media,
such as cable TV. Massive outages show that online
broadcasts from major events such as the FIFA World
Cup and the Oscars shake the foundations of current
live streaming architectures [4], [5], where scalability
is typically afforded through expensive provisioning of
large content-distribution networks (CDNs) [6], [7].

Researchers have long advocated that leveraging
peer-to-peer (P2P) networks for delivering live streams
can significantly ameliorate scalability concerns by re-
ducing burden on the broadcast source [7]–[11]. Involv-
ing end-users in the multiplexing of live streams offers
alluring bandwidth cost savings for businesses, yet
relatively few companies have successfully incorporated
the edge in content delivery – CoolStreaming [9], [12],
PPLive [13] and Akamai NetSession [14] are prominent
examples despite the first two having been discontinued
due to legal concerns. Improved scalability has come
at the price of increased complexity; live streaming

deployments have been fraught with challenges ranging
from unpredictable quality-of-service such as playback
buffering [15] to concerns about upload rates. Signif-
icant research has been conducted with the aim of
improving performance and quality of scalable live
streaming systems [11], [16], [17].

We have identified two stumbling blocks that impede
the development of practical live streaming systems. On
one hand, live streaming systems are complex, involving
sophisticated design decisions and significant engineer-
ing effort. To illustrate, an overlay must be formed
to address scalability and must be maintained despite
failures and peer churn; the source encodes content into
chunks which must be forwarded by overlay members
according to some strategy so that they transitively reach
all interested parties; the chunks must arrive by their
deadlines to prevent buffering and provide high quality
playback. Furthermore, the peers may be heterogeneous
and require different provisioning.

On the other hand, testing live streaming systems
is often ad-hoc and non-repeatable. The live streaming
community has converged on a set of yardsticks against
which to measure live streaming systems, such as the
continuity index [9], but no standard benchmarks or
workloads are used to evaluate these metrics, with
custom generated workloads or exclusive traces being
commonly used [8]. The source code behind published
live streaming systems is often unavailable, further
preventing apples-to-apples scientific comparison be-
tween different approaches. Microbenchmarks of sys-
tems frequently fail to reveal how each design decision
impacts the composite systems, how system components
influence one another or how system parameters should
be calibrated in new environments.

Motivated to address these challenges, our paper fo-
cuses on providing abstractions for understanding the
impact of design decisions in live streaming systems.
We introduce the concept of ingredients: atomic com-
posable building blocks of code with minimal uniform
interfaces that each specifies a partial functionality of a
protocol at the level of a single design decision. As a
concept, casting live streaming protocols as ingredients
has several advantages:

• Simplicity. Each ingredient is a simple, well-
defined programming task.

• Modularity. Developers of new protocols are mo-
tivated to make all design choices explicit and

to minimize coupling within code as much as
possible.
• Extensibility. Additional ingredients can be added

into the system when they are identified without
touching any parts of the code that are not directly
involved in the interaction.
• Optimizability. Each ingredient can be tuned and

subjected to scientific tests, for instance by varying
an independent parameter while keeping others
constant.

We built a framework based on the ingredient
abstraction, STREAMAID, that provides an environ-
ment for developing and improving upon practical live
streaming systems. Aimed to help overcome the stum-
bling blocks identified above, STREAMAID leverages
ingredients to dislodge the complexity of live streaming
protocols and facilitate testing, and provides seamless
deployment on PlanetLab for large-scale evaluation.

We surveyed seven prominent P2P live streaming
systems [9], [18]–[23], identified the fundamental pieces
of functionality and design choices made by each of
them, and expressed them as ingredients within our
system. The unified implementation of all of these
systems in a single framework enables apples-to-apples
measurements and testing. Further, STREAMAID lets
us replace any basic design choice of a given system
and evaluate the impact on the attained performance
or other metrics simply by changing the corresponding
ingredients, which is done through an XML configura-
tion file. We have performed several such experiments
and our paper highlights the insights we gained from
them, underscoring the usefulness of the abstraction. We
believe the framework can help identify shortcomings in
less effective live streaming protocols to enhance their
performance, and to characterize precisely what design
choices constitute the best P2P streaming protocol for
a given environment.

Contributions. First, we present the ingredient ab-
straction to disentangle the often complex components
of live streaming systems into fundamental, atomic
building blocks. This granular abstraction gives design-
ers and implementers a rigorous methodology for cre-
ating, presenting, optimizing and evaluating individual
design decisions of their protocols.

Second, we implement the STREAMAID system
which supports the ingredient abstraction in two ways.
First, STREAMAID provides a Java API by which de-
velopers can program new ingredients for live streaming
protocols, and an XML configuration file that allows
ingredients to be blended. Further, we provide an ex-
tensive framework to rigorously test and calibrate the
resulting protocols, to evaluate them through local sim-
ulation and to deploy them on real distributed testbeds
such as PlanetLab [24]. Unlike prior work, the frame-
work allows experimentation on individual ingredients
while keeping all others constant, providing a scientific
way for testing and optimizing a live streaming system.

Finally, we show how several popular live streaming
protocols can be ported to use the ingredient abstraction,

including BitTorrent Live [25], CoolStreaming [9] and
others. We found that many existing protocols share
ingredients, with several published protocols having
identical functionality except for a single ingredient. We
report on experiments that evaluate individual ingredi-
ents of these protocols, and systems that have been com-
posed of several existing ingredients. Our results show
how STREAMAID helps expose and balance the impact
of different trade-offs in live streaming protocols.

STREAMAID is free software available online at
https://github.com/alibov/StreamAid.

Roadmap. The rest of this paper is organized as
follows: We describe our concept of ingredients in
Section II. We continue with the breakdown of P2P
live streaming protocols to their basic design decisions
in Section III. We evaluate several design decisions in
Section IV. We survey related work in Section V before
concluding in Section VI.

II. MODULES AND INGREDIENTS

Distributed systems are commonly engineered as a
stack of micro-protocol layers that each serve a well-
defined function [26], [27]. In such systems, a message
sent by a specific layer L goes through every underlying
layer at the sender, for example, as depicted in Fig. 1.

The micro-layer design is ideal when messages are
relevant for all underlying layers, since messages will
always flow through them. P2P live streaming protocols
fit this pattern. The design is also effective when build-
ing general-purpose communication middleware for ac-
commodating a large variety of communication patterns
and systems. When these conditions fail to hold, how-
ever, the micro-layer approach imposes overhead and
can make implementations awkward.

A. Ingredients of P2P Live Streaming

Our work is focused on finding thin yet informative
micro-layers for P2P live streaming systems, which we
call ingredients. The idea is for the aggregate function-
ality of a P2P live streaming system to be divided into
both coarse-grained modules that are then further subdi-
vided into these micro-layers ingredients. A module can
be viewed as a composite set of ingredients along with
a so-called core, as illustrated in Figure 2 and explained
below. Within a single network node, modules may
interact with one another through method invocation

Figure 1: Micro-Layers: a model where messages pass through a
stack of thin layers for transmission and reception on the destination.

Figure 2: STREAMAID Module: A module is composed of a set of
ingredients in STREAMAID.

2

player module

streaming module

bootstrap

overlay module

player module

streaming module

bootstrap

overlay modulechunk availability

network module

chunk availability

request handling

request sending

encryption ingredient encryption ingredient

request tracking

request handling

request sending

network module

Listing 1: CoolStreaming [9] built using ingredients.

1 <streamingAlgorithm algorithm=”PullAlgorithm” size=”200”>
2 <overlayAlgorithm H=”200” M=”4” c=”1” amountToSend=”6”
3 exploreRound=”30” gossipTimeout=”6”
4 algorithm=”CoolStreamingOverlay”>
5 <ingredient name=”NeighborChunkAvailabilityIngredient”
6 operationMode=”updateEveryRound”/>
7 </overlayAlgorithm>
8 <ingredient name=”SourcePushIngredient”/>
9 <ingredient name=”EarliestContinuousChunkVSInitIngredient”/>

10 <ingredient name=”HandleChunkRequestsOnArrivalIngredient”/>
11 <ingredient name=”CoolstreamingChunkRequestIngredient”/>
12 </streamingAlgorithm>

Figure 3: STREAMAID Architecture: Each independent module contains a queue of ingredients, and the corresponding XML configuration
elements to instantiate the ingredients.

having a fixed interface. Different implementations of
modules can also be mixed and matched, similarly to
our earlier work in this area [28].

This paper investigates how modules can be bro-
ken down into a single core and multiple ingredients.
The core contains the “essential” uniquely identifying
functionality of a given protocol for implementing that
module, whereas ingredients include reusable pieces of
functionality that could be used by several protocols,
even to enhance the protocol. For maximal modularity,
the core should be as small as possible, ideally even
empty. Yet, sometimes certain pieces of functionality
uniquely characterized a protocol and we found no
reasonable way to augment them or include in other
protocols. In those cases, we kept the functionality as
part of the core, as this helped produce more simple and
readable code. As discussed below, in modules for some
P2P live streaming protocols we managed to obtain an
almost empty core and organize almost all functionality
into ingredients, while in others we were less successful.

Architecture. STREAMAID comprises four mod-
ules: a player module, an overlay module, a streaming
module and a network module (Figure 3). The network
module handles all communication aspects, providing a
simple-to-use API with a SENDMESSAGE method and
a RECEIVEMESSAGE upcall. The overlay module uses
the network module to construct the actual P2P overlay.
There may be multiple initiations of this module running
in parallel. The streaming module queries an overlay
module for neighboring connections and initiates video
chunk exchange with the neighbors according to its pro-
tocol. Finally, the player module handles all buffering,
encoding, decoding and playback of the video content.
This approach allows the overlay modules for one
known system to be mixed and matched with streaming
modules corresponding to other systems.

For clarity of presentation, Figure 3 only exhibits
a partial view of all possible ingredients. Each of the
ingredients encapsulates a specific design decision in
implementing the module’s functionality. We explore
the details in Section III below. Here, we focus on
discussing conceptual aspects of ingredients and their
communication and interaction model.

Communication model. Messages generated by a
certain module on a given peer can only be received by
the same module on the other peer. The only exception

is network module, which is involved in passing every
message sent between peers. Such a message can either
be addressed to a specific ingredient on the receiving
peer, or to all ingredients of the corresponding module
on that peer as well as the core of that module. Sending
a message to all ingredients is essential to allow easy
addition and switching of ingredients, since the sending
ingredient does not need to know in advance the exact
ingredient that would handle the message. Further, a
message can only be addressed to the ingredients of
the same module in which they were generated. When
such a message is addressed to all ingredients of a given
module, the message is passed to these ingredients one
after the other in the order these ingredients appear in
the configuration file. All sent and received messages
pass through the network module, which only contains
ingredients relevant to all messages in the system.

At any event, passing messages across modules is
not allowed. The only way to pass information between
modules, and only between modules of the same peer,
is through the defined interface for such invocations.

The actual set of ingredients to be invoked is spec-
ified in a configuration file that is parsed at runtime.
The appropriate ingredients listed in the configuration
file are instantiated when the framework is started.

Example. Consider the example ingredients shown
in Figure 3. Here, the overlay module sends and receives
messages from the corresponding overlay module on
the remote peer. The “chunk availability” ingredient
sends and receives messages from its remote counterpart
“chunk availability” ingredient. The “request sending”
ingredient sends a message to the corresponding stream-
ing module, so that all associated ingredients of that
module can receive the chunk request message. All mes-
sages in Figure 3 pass through the encryption ingredient
embedded inside the network module.

The STREAMAID communication model maintains
a clear separation between modules, thus ensuring that
modules do not interfere with the tasks of one another.
In contrast, ingredients contained in the same module
require a more flexible communication model as an
ingredient may not know at development time which
ingredients will be instantiated alongside it during run-
time to handle messaging. Further, different nodes may
have different ingredients instantiated.

3

B. Discussion

Our approach has several benefits: independent mod-
ules allow for encapsulation and a loosely coupled
protocol structure, while the intra-module ingredients
allow messages to be handled according to a chain-
of-responsibility and enable seamless addition of fine-
grained functionality. Further, ingredients in the network
module mimic the micro-layer architecture, allowing us
to define system-wide ingredients that affect all sent
and received messages. For example, the operation of
a pull-based streaming module can be partitioned into
several ingredients, as elaborated further below. One
such ingredient can handle chunk requests. Different
nodes may implement different ingredients for handling
chunk requests. Thus, the chunk request message would
be sent to the streaming module to be disseminated to
all ingredients. Further, an optional reputation ingredient
could be added to the streaming module to track some
statistics, all without modifying any other part of the
protocol. This example is illustrated in Figure 3.

Should the protocol designer decide to experiment
with a different implementation for a specific design
decision, they would only need to implement that spe-
cific ingredient and replace the previous implementation
with the new one. An ingredient can easily be changed
via a configuration file setting, making testing different
design decisions a simple and fast process. For example,
the CoolStreaming [9] algorithm was decomposed in
MOLStream to a streaming module and an overlay mod-
ule. Here, we have further decomposed these modules
of CoolStreaming to separate ingredients. The results
are shown in Listing 1, which depicts the portion of the
STREAMAID configuration file that defines the P2P live
streaming algorithm to be used.

C. Ingredients in STREAMAID

Under the STREAMAID model, the support for in-
gredients enables fine grained control of the protocols
produced. An ingredient in STREAMAID is a class that
implements two basic methods:
• The NEXTCYCLE method is called periodically and

can be used to do routine checks and to invoke
actions such as sending messages.
• The HANDLEMESSAGE method handles messages

received by this ingredient, or the underlying mod-
ule of the ingredient. When sending messages, an
ingredient may choose to send the message to the
ingredient layer on another node or to the entire
corresponding module including all the ingredients
associated with the module.

This simple interface proved enough to accommodate
all the functionality needed to express a plethora of
protocols; in particular every ingredient mentioned in
Section III as well as ingredients we implemented but
do not discuss due to a lack of space.

III. EXPRESSING DESIGN DECISIONS

We surveyed a large number of P2P live streaming
systems and identified how their behavior could be

encapsulated with the ingredient abstraction. By exam-
ining the range of systems in detail, we were able to
identify several common design decisions involved in
building these systems. We discuss several ingredients
corresponding to these choices, and omit a number of
others due to space constraints.

Recall that we view P2P live streaming as com-
prising four major modules: network interface, overlay
maintenance, stream dissemination, and player issues.

A. Player Module

The player module is a consumer that displays the
chunks received by the streaming module and as such
does not send out any messages. However, as shown
in Section IV, there are several important decisions to
be made which affect the overall performance of the
streaming protocol.

a) Player Initialization Time Ingredient: The
streaming module chooses when to initialize the player
module. Upon initialization, the player module waits
(buffers incoming chunks) for a predefined amount of
time (a parameter) and then begins playback. This buffer
time is an important design decision by itself, but the
point in time when the player module is initialized also
impacts overall performance. One option is to initialize
the player module on startup; another is to wait for a
first bitmap or chunk to be received.

b) Player Initialization Position Ingredient:
When the player module is initialized, the streaming
module also sets the chunk from which the playback
starts. If the player is initialized when a chunk is re-
ceived, the playback can start from that chunk. However,
if the player module is initialized when a bitmap is
received, there are several possibilities for the playback
starting point. This is not a trivial problem [12] since
playback should start sometime between the first avail-
able chunk and the last one.

c) Skip Chunks Ingredient: After the playback
has started, the player module can reach a state where
the next chunk to be played is missing. The decision
of what to do when it happens is usually treated as a
binary one - either skip the missing chunk or wait for
it. In fact, BitTorrent Live proposed to combine the two
by waiting for some time and then skipping. However,
throughout the run of a P2P streaming protocol, the
decision whether to wait or skip a missing chunk is
circumstantial. The algorithm ought to wait while the
buffer window is empty, but if only the next or a few
chunks are missing they may be skipped.

d) Adaptive Playout Ingredient: Several articles
mention the possibility to use Adaptive Playout: in-
crease the playback continuity by slightly changing the
playback speed while fixing the sound pitch so that the
change would be unnoticed by users [29]. Streaming
algorithms can slow down the playback to increase the
buffer window, increasing resilience and continuity at
the cost of increased latency. If the system is stable
enough and the buffer window is too large, a faster
playback can be used to decrease latency and window

4

size. Adaptive Playout can also be used to decrease
startup delay: a streaming protocol can start with a small
buffer window, minimizing the startup buffer time, and
increase the window by slower playback to get to the
desired window size.

B. Streaming Module

In most streaming algorithms, chunks are only ex-
changed with neighbors, which by definition relies on
an underlying overlay module. Pull-based streaming
modules can normally work with any overlay, whereas
push-based streaming modules usually work with tree-
based overlays.

1) Push-based Streaming: Push-based streaming is
simple: whenever a chunk is received, forward it to all
child nodes. The overlay module is responsible for dis-
tinguishing child nodes. Multi-tree streaming operates
in a similar fashion, except that the overlay maintains t
spanning trees, each of which spans all peers, where t
is a parameter.

The underlying overlay masks neighbor failures, so
the only remaining concern for a streaming protocol
is to recover the chunks that were missed while the
parent node was being replaced. One option is to recover
nothing, which is legitimate if another protocol running
in parallel will handle chunk recovery, or if missing
chunks are skipped during playback. Another option
is to request the new parent node to continue sending
chunks from where the old parent left off while also
catching up if bandwidth allows.

BitTorrent Live [23], [25] takes a Multi-Tree ap-
proach, where each tree is called a club, allowing
multiple parents in the same club. The choice increases
the continuity of the stream at the cost of upload
bandwidth consumed by redundant chunks being sent
by multiple parents in the same club. Our decomposition
of the BitTorrent Live protocol is illustrated in Fig. 5.

2) Pull-based Streaming: Pull-based streaming re-
quires more communication and decision points. All
pull-based streaming algorithms that we surveyed, how-
ever, made the same types of decisions, each of which
we were able to successfully encapsulate as an ingredi-
ent. Accordingly, the core of the pull-based streaming
module was virtually empty.

a) Chunk Availability Ingredient: When pull
based streaming is involved, neighboring peers ex-
change bitmaps containing information on which
chunks each peer has. The bitmap exchange can be done
periodically (as in CoolStreaming [9] and PULSE [21])
or a bitmap can be sent for every new chunk received
(as in Chainsaw [30]). As chunk availability exchange
only occurs between neighboring peers, this ingredient
is always tied to a specific overlay.

b) Request Sending Ingredient: Another deci-
sion in the pull-based streaming module is a choice of
what chunks to send. That is, using the neighbor chunk
availability and potentially additional parameters (such
as latency, chunk time to deadline, requests already sent

to neighbor, history with neighbor, etc.), the algorithm
decides which chunks to request and from which neigh-
bors. CoolStreaming sends requests based on rarest first
but only to peers that can send the chunk before the
deadline. Chainsaw sends out requests randomly, but
limits the amount of requests sent to each neighbor,
whereas PULSE prioritizes peers using the exchange
history and buffer window overlap as parameters.

c) Request Handling Ingredient: While Cool-
Streaming and Chainsaw handle requests right on arrival
(except for some special handling by the source in
Chainsaw), PULSE prioritizes request handling using
similar parameters as the request sending ingredient.

d) Source Push Ingredient: Finally, as in the
overlay module, the stream’s source node may employ
an algorithm different from other nodes. For instance,
in an effort to reduce latencies, the source node can
push the newly generated chunks to its neighbors re-
gardless of the protocol run by other nodes. While other
ingredients shown in this section are mandatory and are
required for the operation of the module, Source Push
Ingredient is optional and can be turned off at will.

3) Push-Pull Hybrid Streaming: Push and pull al-
gorithms can be combined by running them in paral-
lel. Here, chunks closer to the playback deadline are
requested by the pull algorithm while chunks further
ahead should be received by the push algorithm. The
pull and push algorithms may use the same overlay or
different overlays. For example, in mTreeBone [22], the
pull algorithm is the CoolStreaming streaming module
using the CoolStreaming overlay, while the push al-
gorithm uses the simple push-based streaming module
described in Section III-B1, leveraging a tree overlay
described in their paper.

C. Overlay Module
A fundamental building block of a P2P live stream-

ing system is the underlying overlay. The overlay main-
tains and constantly updates two lists of nodes: the set
of known nodes and the set of neighbor nodes. Known
nodes are populated either by querying an agreed upon
tracker node [18], [19], through gossiping [9], [20], or
using neighbors of another underlying overlay [9], [21].
Nodes may be chosen from the known list to be included
in the neighbors list. Several factors influence the choice
of electing node p to be a neighbor:

• Local state: the local state of the node may include
the current number of neighbors the node has, the
average latency of the node, the chunks the node
has, the total uptime of the node, and possibly the
total upload bandwidth of the node.

• Exchange history: the chunks sent to p and received
from p in total or in a recent time window.

• Neighbor state: the same properties as in the local
state but of the potential neighbor p. Any such
property that is used in the decision must be
specifically sent by p and kept up to date. Updates
can be either scheduled or as soon as the change
in the state occurs.

5

Table I: Classification of overlay algorithms.

Overlay Type Known List Neighbor List Dependencies Request reply
SCAMP [18] Non-symmetric Tracker, forward

messages
num. of neighbors N/A

Coolstreaming
[9]

Symmetric SCAMP, gossip num. of neighbors, exchange history num. of neighbors

Araneola [20] Symmetric Tracker,
gossip, forward
messages

num. of neighbors num. of neighbors, num.
of neighbors of requesting
node

Pulse [21] Non-symmetric SCAMP num. of neighbors, recent exchange history,
average latency, average latency of potential
neighbor

N/A

Prime [19] Symmetric
multi-tree based

Tracker num. of parent neighbors, download
bandwidth, stream bitrate

num. of child neighbors,
upload bandwidth, stream
bitrate

BitTorrent
Live [23]

Symmetric
multi-tree based

Tracker, gossip num. of parent neighbors, num. of children,
num. of children of potential neighbor

Always positive

mTreeBone
[22]

Symmetric tree
based

Tracker, tree
ancestors

Existence of parent neighbor, upload
bandwidth of potential neighbor, distance from
source of potential neighbor, stream bitrate

num. of child neighbors,
upload bandwidth, stream
bitrate

• Link to potential neighbor: latency or throughput
between the node and p.

If the protocol dictates symmetry between neighbors
(i.e., if p is a neighbor of q then q must be a neighbor
of p), then neighbor requests must be approved by the
potential neighbor. The choice of accepting a neighbor
can now involve the aforementioned factors.

Sometimes properties of the node requesting the
connection differ from those of the node approving the
request, for instance in tree-based overlays. Here, the
requesting node is usually referred to as a child and
the node receiving and approving the request is referred
to as a parent. Hence, the list of neighbors is divided
into two separate lists: a list of child nodes and a list
of parent nodes with possible different treatment for
different states of these lists.

The source node of a given live stream can employ
a different algorithm than the other nodes. For instance,
to battle free-riding and spread chunks more evenly,
the source node may periodically switch neighbors to
a random subset of the known nodes [21].

Table I classifies several popular overlay algorithms.
The column “Known List” summarizes the sources from
which a node learns about other nodes in the system
and stores them in the known list. Next, “Neighbor
List Dependencies” shows the parameters that affect
the decision to include a node from the known list
in the neighbor list. Finally, symmetric overlays have
parameters for accepting neighboring requests. We state
them in column “Request Reply”.

As overlay construction algorithms differ signifi-
cantly, most of the logic resides in the core of the
overlay module. Nevertheless, we were able to extract
some general ingredients applicable to many overlay
construction algorithms. These are deferred to a full
version of the paper.

IV. EVALUATION

We evaluate how the STREAMAID framework works
in practice and the extent to which ingredients provide

modularity, extensibility and optimizability by experi-
menting with protocols expressed within the framework.
We use the CoolStreaming and BitTorrent Live proto-
cols as case studies.

A. Setup and Measurements

The metrics we adopt concern the viewing expe-
rience of end-users: (i) the average time it takes from
login to the playback of the first chunk (Startup Delay);
(ii) the average time from chunk generation to chunk
playback (Latency), (iii) the average fraction of chunks
played of those that are playable (Continuity Index) (CI)
and (iv) the percentage of users for which the Continuity
Index is perfect (Perfect Continuity Index%, PCI%). We
measure the CI and PCI% only for users who actually
played chunks. We also define the Zero Playback%
metric as the percentage of users who played no chunks
at all. We ran tests in STREAMAID using both the
PeerSim simulator [31] and deployment on Planetlab.

In PeerSim, message latencies are distributed uni-
formly between 200 and 400 ms. All tests on PeerSim
use LogNormal(µ = 4.29, σ2 = 1.28) distribution of
session lengths [32] and failed peers are immediately
replenished. Each peer has upload bandwidth limit of
5.6 Mbps and the source’s upload limit is 16.8 Mbps.
Each test simulates 300 seconds of a 300 Kbps stream
on 300 peers, while stream generation starts at second
10. Each shown result is an average of 10 runs with
different initial random seeds. We test the popular Cool-
Streaming streaming algorithm with two overlays: the
original overlay used by CoolStreaming (with M = 4)
and the Araneola Overlay (with L = 3 or 4). The L and
M parameters of the overlays were chosen so that the
overlays would have a similar node degree.

On PlanetLab, we tested on 200 nodes and ran each
test 5 times. We did not induce extra churn. However,
PlanetLab nodes exhibit highly heterogeneous latencies
and responsiveness, producing behavior reminiscent of
actual churn. On PlanetLab, we tested our ingredient-
based implementation of the BitTorrent Live protocol as
described by Cohen et al. [23].

For each of the following sections, we pick a

6

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

skip wait wait1 wait2 wait3
 0
 2000
 4000
 6000
 8000
 10000
 12000
 14000
 16000
 18000
 20000

C
on

tin
ui

ty
 In

de
x

La
te

nc
y

(m
se

c)

missing chunk handling

CI
Latency

(a) Handling of Missing Chunks

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

3-4 2-3 1-2 1-1

range of download connections

CI
Duplicate Coefficient

(b) Number of Download Connections

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

2-3 3-4 4-5 5-6
 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

C
on

tin
ui

ty
 In

de
x

La
te

nc
y

(m
se

c)

Latency range (seconds)

CI
Latency

(c) Latency Range ingredient
Figure 4: Testing our implementation of BitTorrent Live with startup buffer of 2 sec. Figure 4(a) shows different missing chunk handling methods.
In 4(b) we use the skip ingredient for handling missing chunks and test various download connection ranges. In 4(c) we use the skip ingredient
for handling missing chunks, 2-3 parent nodes and test different latency ranges for the Latency Range adaptive playout ingredient.

streaming module

bootstrap
overlay module

chunk availability

Chunk hash validation

Latency adaptive playout

clubJoin

Missing chunk handle

network module

player module

clubInfo
neighborAdd

parentRemove

Figure 5: BitTorrent Live built from ingredients. The BitTorrent Live protocol
decomposed into ingredients as implemented in STREAMAID.

single design decision and assess its effect on the
aforementioned metrics. Each such design decision is
implemented as an ingredient in STREAMAID.

B. Case Study: BitTorrent Live

BitTorrent Live was a highly anticipated decentral-
ized live streaming protocol from Cohen et al., the
author of BitTorrent [23], and which to the best our
knowledge has not been implemented independently
before. Figure 5 shows our decomposition of the Bit-
Torrent Live protocol into ingredients. In the overlay
module, a newly joined peer contacts the tracker and
receives a partial list of online peers in the bootstrap
ingredient. The peer also receives number of clubs to
join and decides to join them or choose different clubs
to join in the ClubJoin ingredient. For every club, the
peer gathers information on other peers in that club
in an instance of the ClubInfo ingredient, and forms
connections with peers in the club in the Neighbo-
rAdd ingredient, which also preserves upper and lower
bounds on in-club and outer-club connections. Parent
nodes that fail to send chunks on time are removed in
the ParentRemove ingredient. In the streaming module,
in order to reduce the amount of redundant chunks being
sent by multiple parents, children update their in-club
parents upon receiving a chunk in each club in the
Chunk Availability ingredient. In the player module, the
speed of the playback to adjusted to keep the latency
bounded in the Latency Adaptive Playout ingredient and
different options of handling missing chunks (skip, wait,
wait and then skip) are also implemented as ingredients.
Chunk authenticity is validated by the network module
upon reception by the chunk hash validation ingredient.

1) Handling of Missing Chunks: When the player
cannot play the next chunk because it is missing it will

halt. The BitTorrent Live patent proposes several options
of handling this case: Wait for the missing chunk, skip
the missing chunk or wait for some time and then skip.
Each of these options was implemented in STREAMAID
as an ingredient. As can be seen from Figure 4(a)
(where waitX means waiting for X seconds and then
skipping), skip and wait have the best continuity index
and waiting and then skipping only hurts the continuity
index while also increasing latency. It should be noted
that the latency is marginally increased when waiting for
missing chunks, but not as much as waiting for more
than 1 second and then skipping.

2) Number of In-Club Parent Connections: Another
interesting parameter of BitTorrent Live is the number
of in-club download connections. As shown in Fig. 4(b),
as the number of download connections grow, the Con-
tinuity grows, but so does the percentage of duplicated
chunks that are sent. We can see that in these settings,
having two parents is enough for good continuity index
and only yields about 14% duplicates. Note that even
when there is only one parent there is a small amount
of duplicate chunks due to parent switching.

3) Latency Adaptive Playout Ingredient: As sug-
gested in the BitTorrent Live patent, we have added an
ingredient that slows down or speeds up the playback in
order to reach some set latency range. As was expected,
and evidenced on Fig. 4(c), higher ranges improve the
CI, but, increase the latency.

C. Case Study: Pull-based Streaming

As discussed earlier, a decomposition of a pull-
based algorithm into ingredients is shown in Figure 3.
Our focus is on variants of CoolStreaming [9] and
Araneola [20].

1) Source Push Ingredient: The source node can
push newly generated chunks to its neighbors by run-
ning a push-based protocol regardless of the streaming
protocol run by other nodes. We test this ingredient for
several different settings. Fig. 6 shows that enabling
source push always improves the results. In all
settings tested, enabling source push lowered the Startup
Delay by 0.2-0.3 seconds and Latency by 1.2 seconds on
average and always improved both the CI and the PCI%.
We enabled source push in all remaining experiments.

7

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

A
ra

n
e
o
la

 (
L=

3
),

sk
ip

A
ra

n
e
o
la

 (
L=

4
),

sk
ip

C
o
o
ls

tr
e
a
m

in
g

 (
M

=
4

),
sk

ip

A
ra

n
e
o
la

 (
L=

3
),

w
a
it

A
ra

n
e
o
la

 (
L=

4
),

w
a
it

C
o
o
ls

tr
e
a
m

in
g

 (
M

=
4

),
w

a
it

(a) Continuity Index

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

(b) Perfect Continuity Index

 0

 2000

 4000

 6000

 8000

 10000

 12000

(c) Latency (msec)

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500
no source push

source push

(d) StartupDelay (msec)
Figure 6: CoolStreaming source push. Source push evaluation of CoolStreaming using the Araneola Overlay (L = 3 and 4) and the original
CoolStreaming overlay (M = 4) waiting for missing chunks and skipping missing chunks. All algorithms use startup buffer of 2 seconds and
start buffering from the first bitmap or chunk. Enabling the source push ingredient can only improve performance.

 8500
 9000
 9500

 10000
 10500
 11000
 11500
 12000
 12500

 0 2 4 6 8 10

La
te

nc
y

(m
se

c)

k - Init Position (chunks)

Araneola(L=3,sb=1k)
Araneola(L=3,sb=2k)

Coolstreaming(M=4,sb=1k)
Coolstreaming(M=4,sb=2k)

(a) Latency

 0.976
 0.978
 0.98

 0.982
 0.984
 0.986
 0.988
 0.99

 0.992
 0.994
 0.996

 0 2 4 6 8 10

C
on

tin
ui

ty
 In

de
x

k - Init Position (chunks)

Araneola(L=3,sb=1k)
Araneola(L=3,sb=2k)

Coolstreaming(M=4,sb=1k)
Coolstreaming(M=4,sb=2k)

(b) Continuity Index

 0.4
 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0 2 4 6 8 10

Pe
rf

ec
t

C
on

tin
ui

ty
 In

de
x

(%
)

k - Init Position (chunks)

Araneola(L=3,sb=1k)
Araneola(L=3,sb=2k)

Coolstreaming(M=4,sb=1k)
Coolstreaming(M=4,sb=2k)

(c) Perfect Continuity Index%
Figure 7: CoolStreaming streaming module using the Araneola (L = 3) and CoolStreaming overlays (M = 4) with startup buffers of 1 and
2 sec and varying values of k (initial position). All algorithms start buffering from the first bitmap or chunk, use source push and wait if there
is no chunk to play. Initializing the player to start at a chunk earlier than the last one available strikes a trade-off between the Perfect
Continuity Index% and the Latency while keeping the Startup Delay fixed.

2) Player Initialization Position Ingredient: When
the player module is initialized by the streaming mod-
ule, the streaming module must first choose a chunk
from which the playback would start, while also striving
to keep latency low. We achieve better performance
when initializing the player module only upon receiving
a bitmap or chunk. When the player is initialized after
receiving a bitmap, there are several possible playback
starting positions, which we explore in an experiment.
We propose a parameterized ingredient that begins the
playback at most k chunks before the most recent
available chunk reported in the bitmap. In order to
also increase the likelihood of continuous playback, the
ingredient initializes the play module to the beginning
of the longest consecutive sequence of recent chunks,
bounded by k. However, since the first bitmap may be
received from a peer who lags behind, we limit the
maximum allowed latency of the initialization position.

The Startup Delay is unaffected by the setting of
k since the initialization of the player happens at the
same time regardless of k. However, other metrics are
greatly affected. In Figure 7(a), we see how the latency
grows logarithmically with each added chunk. Also,
Figures 7(b) and 7(c) show logarithmic improvement
of the CI and the PCI%. Although the improvement of
the CI is marginal (even with k = 0 the index is already
at 0.978), the PCI% grows dramatically (Figure 7(c)).
We observe that for both the CI and the PCI% the
improvement stops for k larger than 3-5 (depending on
the overlay), while the latency keeps growing, albeit
at a slower pace. We conclude that initializing the
player to start at a chunk earlier than the last one
available strikes a trade-off between the PCI% and the
Latency while keeping the Startup Delay constant. In

other words, assuming a hit in latency is tolerable,
increasing k boosts Continuity, and greatly increases
the percentage of users with Perfect Continuity.

3) Adaptive Playout Ingredient: We discussed in
Section III-A how Adaptive Playout can be used to
decrease Latencies and Startup Delays. A simple Adap-
tive Playout ingredient implementation can try to reach
a specific pull window size defined by a parameter.
More sophisticated ones may leverage other available
information. We propose an Adaptive Playout ingredi-
ent which tries to measure the minimal window size
required for maximal resilience.

Our algorithm works as follows. We measure how
long before the playback deadline missing chunks get
before they are received. These measurements are be-
ing averaged with exponential weights using a sliding
window. If chunks are not received before the deadline,
then the buffer is too small. Otherwise, if chunks are
received long before the deadline, the buffer can be
shrunk without losing continuity. We set a target buffer
and change the playback speed to reach the target buffer
size. The speed change is limited to 10% to minimize
annoyance for the user.

In Figure 8, we test the CoolStreaming streaming
module with Araneola overlay module (L = 3) using
startup buffer of 1 sec, and for several player module
initialization position values k. We found that increas-
ing the target buffer behaves in a similar fashion
as increasing k: the latencies grow linearly while
the Continuity Index and the Perfect Continuity
Index% grow logarithmically reaching a plateau at
roughly 7 chunks (graph omitted). The methods can be
combined to reach very high Perfect Continuity Index%.

8

 8500

 9000

 9500

 10000

 10500

 11000

 11500

 12000

 12500

 13000

 0 2 4 6 8 10

La
te

nc
y

(m
se

c)

bufferSize (chunks)

InitPos=0

InitPos=1

InitPos=2

InitPos=3

InitPos=4

(a) Latency

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10

Pe
rf

ec
t

C
on

tin
ui

ty
 In

de
x

(%
)

bufferSize (chunks)

InitPos=0

InitPos=1

InitPos=2

InitPos=3

InitPos=4

(b) Perfect Continuity Index%
Figure 8: CoolStreaming/Araneola Adaptive Playout. Latency and
Perfect Continuity Index% of CoolStreaming streaming module using
Araneola Overlay (L = 3) with startup buffers of 1 sec.All algorithms
start buffering from the first bitmap or chunk, use source push and
wait if there is no chunk to play.

For instance, with k = 4 and the target buffer of 7
chunks, the PCI% hovers above 85% with an average
latency of 12 seconds.

V. RELATED WORK

Ingredients. Coarse grained decomposition of com-
plex functionality to provide modularity and extensibil-
ity has been considered before in different settings, such
as micro-protocol layers in replication systems [26],
[27], Portable Interceptors in OMG’s CORBA commu-
nication broker [33], and RPC style remote method
invocations augmented with channels in Microsoft’s
Windows Communication Foundation (WCF) [34]. Our
ingredient abstraction is inspired by these works, while
cast in the P2P live streaming environment. MOL-
STREAM is our previous system primarily designed
for the rapid deployment and evaluating of P2P live
streaming protocols, which also sought to modularize
these protocols [28]. While we leverage the system
for deployment, the built-in MOLSTREAM modules
are coarse-grained and mostly lack intercompatibility,
whereas the finer-grained ingredients we proposed in
STREAMAID are more atomic, intercompatible and shed
light on the design decisions involved.

P2P Live Streaming. There are shrewd surveys of
P2P live streaming systems and principles [10], [11],
[16], [17], [35]. Most of these works classify systems
into tree-based or mesh-based [16], [32], while Zhang
et al. [11] provide a taxonomy for classifying P2P
live streaming protocols. ShadowStream [8] introduces
methods for transparently embedding a live streaming
protocol to be evaluated into large-scale live streams

without affecting the quality for viewers, but relies on
access to a production Internet live streaming network.

Chunk scheduling. Many works focus on the chunk
scheduling aspect of P2P live streaming. Zhou et al. [15]
give an analytic evaluation of the RAREST-FIRST and
GREEDY strategies for chunk request scheduling using
their own stochastic model and propose a new mixed
strategy that achieves the best of both worlds. Shakkottai
et al. [36] also evaluate these strategies for minimizing
the buffer size and propose a hybrid policy that reduces
the required buffer size to ensure high probability of
chunk playout. Zhao et al. [37] propose a general and
unified mathematical framework to analyze a large class
of chunk selection policies. Other works propose and
evaluate various chunk scheduling algorithms in differ-
ent settings. Liang et al. [38] test five chunk scheduling
algorithms in a variety of settings such as different
source upload bandwidth, buffer delays, source chunk
scheduling algorithms and node degrees. Our work cor-
roborates many of their findings, and expands to other
design decisions made by P2P streaming algorithms.

Overlays. Other works cover the overlay building
aspect of P2P live streaming. Liu et al. [39] analytically
derive a new overlay for push-based dissemination;
Zhang et al. [40] evaluate two different overlay con-
struction strategies: a RANDOM overlay choice where a
peer selects neighbors without considering their network
locations, and a NEARBY-OVERLAY where a peer only
neighbors with nearby peers. In some systems, upload
bandwidth affects the number of neighboring peers [41].

Our work encapsulates the concerns discussed in the
literature about chunk scheduling, buffer delay, source
chunk scheduling and overlay construction into ingre-
dients, allowing them to be evaluated, improved and
reasoned about while keeping other aspects of the P2P
live streaming system fixed. By systematically applying
our abstraction, we also identify several other concerns
that we feel have been generally overlooked, such as the
player module initialization time and position, and show
how they affect the overall performance of the P2P live
streaming protocol.

VI. CONCLUSIONS

Our large-scale experiments illustrate the power of
the abstraction and the flexibility of STREAMAID. We
show how continuity can be traded for latency or
duplicate chunks in the BitTorrent Live protocol; how
pull-based streaming protocols always benefit from the
source constantly pushing fresh chunks to its neighbors;
how choosing the first chunk in playback is an implicit
trade-off between latency and playback continuity; how
adaptive playout can be used for the same trade-off,
and how seemingly minor design decisions significantly
impact the overall performance of the live stream.
We believe the ingredients abstraction and our open-
source framework can help accelerate development and
discovery for future P2P live streaming systems.

Acknowledgements: We thank the anonymous reviewers for
useful comments and insights. This work is partially supported by

9

the Technion Hasso Platner Institute (HPI) Research School, grant
#152620-051 from the Icelandic Research Fund and funds from
Emory University.

REFERENCES

[1] Cisco, “Visual networking index: forecast and methodology,
2013-2018,” http://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/
VNI Hyperconnectivity WP.html, 2014.

[2] Point Topic, “Global broadband statistics.” http://point-topic.
com/free-analysis/global-iptv-subscriber-numbers-q1-2014/.

[3] P. H. O’Neill, “Twitch dominated streaming in 2013, and here
are the numbers to prove it,” The Daily Dot, Jan. 2014.

[4] T. Spangler, “ESPN Live Stream Crashes During USA-
Germany World Cup Match,” Variety, Jun. 2014.

[5] D. F. Amol Sharma, “ABC’s Oscars Streaming Outage Shows
Web Limitations for TV Networks,” Wall Street Journal, 2014.

[6] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai network:
a platform for high-performance internet applications,” ACM
SIGOPS Op. Sys. Rev., vol. 44, no. 3, pp. 2–19, 2010.

[7] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang,
and B. Li, “Design and deployment of a hybrid CDN-P2P
system for live video streaming: experiences with LiveSky,”
in Proceedings of the 17th ACM International conference on
Multimedia. ACM, 2009, pp. 25–34.

[8] C. Tian, R. Alimi, Y. R. Yang, and D. Zhang, “Shadowstream:
performance evaluation as a capability in production internet
live streaming networks,” in ACM SIGCOMM. ACM, 2012,
pp. 347–358.

[9] X. Zhang, J. Liu, B. Li, and Y. Yum, “CoolStreaming/DONet:
a data-driven overlay network for peer-to-peer live media
streaming,” in Proc. of the 24th IEEE INFOCOM 2005, vol. 3,
pp. 2102–2111.

[10] Y. Liu, Y. Guo, and C. Liang, “A survey on peer-to-peer video
streaming systems,” Peer-to-peer Networking and Applications,
vol. 1, no. 1, pp. 18–28, 2008.

[11] X. Zhang and H. Hassanein, “A survey of peer-to-peer live
video streaming schemes–an algorithmic perspective,” Com-
puter Networks, vol. 56, no. 15, pp. 3548–3579, 2012.

[12] B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu, and X. Zhang,
“Inside the new coolstreaming: Principles, measurements and
performance implications,” in INFOCOM 2008. IEEE.

[13] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A measure-
ment study of a large-scale P2P IPTV system,” IEEE Trans. on
Multimedia, vol. 9, no. 8, pp. 1672 –1687, 2007.

[14] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Druschel,
B. Maggs, B. Wishon, and M. Ponec, “Peer-assisted content
distribution in Akamai Netsession,” in Proc. of the ACM
Conference on Internet Measurement Conference (IMC), 2013,
pp. 31–42.

[15] Y. Zhou, D.-M. Chiu, and J. C. Lui, “A simple model for chunk-
scheduling strategies in P2P streaming,” IEEE/ACM Trans. on
Networking, vol. 19, no. 1, pp. 42–54, 2011.

[16] X. Hei, Y. Liu, and K. W. Ross, “IPTV over P2P streaming
networks: the mesh-pull approach,” Communications Magazine,
IEEE, vol. 46, no. 2, pp. 86–92, 2008.

[17] N. Ramzan, H. Park, and E. Izquierdo, “Video streaming over
P2P networks: Challenges and opportunities,” Signal Process-
ing: Image Communication, vol. 27, no. 5, pp. 401–411, 2012.

[18] A. Ganesh, A. Kermarrec, and L. Massoulié, “Peer-to-peer
membership management for gossip-based protocols,” Comput-
ers, IEEE Transactions on, vol. 52, no. 2, pp. 139–149, 2003.

[19] N. Magharei and R. Rejaie, “Prime: Peer-to-peer receiver-
driven mesh-based streaming,” in INFOCOM 2007. IEEE,
pp. 1415–1423.

[20] R. Melamed and I. Keidar, “Araneola: A scalable reliable
multicast system for dynamic environments,” in Third IEEE
International Symposium on Network Computing and Applica-
tions (NCA)., 2004, pp. 5–14.

[21] F. Pianese, D. Perino, J. Keller, and E. Biersack, “PULSE:
an adaptive, incentive-based, unstructured P2P live streaming
system,” Multimedia, IEEE Transactions on, vol. 9, no. 8, pp.
1645–1660, 2007.

[22] F. Wang, Y. Xiong, and J. Liu, “mtreebone: A hybrid tree/mesh
overlay for application-layer live video multicast,” in Dis-
tributed Computing Systems, 2007. ICDCS. 27th International
Conference on, pp. 49–49.

[23] B. Cohen, “Peer-to-peer live streaming,” September 2012, US
Patent App. 13/603,395.

[24] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “Planetlab: an overlay
testbed for broad-coverage services,” ACM SIGCOMM, vol. 33,
no. 3, pp. 3–12, 2003.

[25] J. Ruckert, T. Knierim, and D. Hausheer, “Clubbing with the
peers: A measurement study of BitTorrent Live,” in P2P, 2014,
pp. 1–10.

[26] H. Miranda, A. Pinto, and L. Rodrigues, “Appia, a flexible
protocol kernel supporting multiple coordinated channels,”
in Distributed Computing Systems. 21st Int. Conference on.
IEEE, 2001, pp. 707–710.

[27] R. van Renesse, K. Birman, and S. Maffeis, “Horus: A Flexible
Group Communication System,” CACM, vol. 39, no. 4, pp. 76–
83, 1996.

[28] R. Friedman, A. Libov, and Y. Vigfusson, “MOLStream: A
modular rapid development and evaluation framework for live
P2P streaming,” in ICDCS, 2014.

[29] E. Steinbach, N. Farber, and B. Girod, “Adaptive playout
for low latency video streaming,” in Int. Conf. on Image
Processing, vol. 1. IEEE, 2001, pp. 962–965.

[30] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and
A. Mohr, “Chainsaw: Eliminating trees from overlay multicast,”
Peer-to-peer systems IV, pp. 127–140, 2005.

[31] A. Montresor and M. Jelasity, “PeerSim: A scalable P2P
simulator,” in Proc. of the 9th Int. Conference on Peer-to-Peer
(P2P), 2009.

[32] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree:
A comparative study of live P2P streaming approaches,” in
INFOCOM. IEEE, 2007, pp. 1424–1432.

[33] “CORBA Portable Interceptors,” http://www.omg.org/cgi-
bin/doc?formal/04-03-08.

[34] S. Klein, Professional WCF programming:. NET development
with the Windows communication foundation. John Wiley &
Sons, 2007.

[35] A. Sentinelli, G. Marfia, M. Gerla, S. Tewari, and L. Kleinrock,
“Will IPTV ride the peer-to-peer stream?” IEEE Communica-
tions Magazine, vol. 45, no. 6, p. 86, 2007.

[36] S. Shakkottai, R. Srikant, and L. Ying, “The asymptotic behav-
ior of minimum buffer size requirements in large P2P streaming
networks,” Selected Areas in Communications, IEEE Journal
on, vol. 29, no. 5, pp. 928–937, 2011.

[37] B. Q. Zhao, J. C.-S. Lui, and D.-M. Chiu, “Exploring the
optimal chunk selection policy for data-driven P2P streaming
systems,” in Peer-to-Peer Computing, 2009. P2P. IEEE 9th Int.
Conference on, pp. 271–280.

[38] C. Liang, Y. Guo, and Y. Liu, “Investigating the scheduling
sensitivity of P2P video streaming: an experimental study,”
Multimedia, IEEE Transactions on, vol. 11, no. 3, pp. 348–
360, 2009.

[39] Y. Liu, “On the minimum delay peer-to-peer video streaming:
how realtime can it be?” in Proceedings of the 15th interna-
tional conference on Multimedia. ACM, 2007, pp. 127–136.

[40] X. Zhang and H. Hassanein, “Understanding the impact of
neighboring strategy in peer-to-peer multimedia streaming ap-
plications,” Computer Communications, vol. 35, no. 15, pp.
1893–1901, 2012.

[41] A. P. C. da Silva, E. Leonardi, M. Mellia, and M. Meo, “A
bandwidth-aware scheduling strategy for P2P-TV systems,” in
Peer-to-Peer Computing, 2008. P2P. 8th Int. Conference on.
IEEE, pp. 279–288.

10

