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Abstract—In order for P2P systems to be viable, users must
be given incentives to donate resources. Such incentives can be
in the form of tit-for-tat like mechanisms, in which a user is
rewarded with better service for contributing resources to the
system. Alternatively, such incentives can be economical, i.e., users
get paid for their contribution. In particular, the latter can be
achieved through a P2P advertisement mechanism.

This paper investigates how to incorporate an advertisement
mechanism into a P2P system to serve as an incentive to donate
resources, especially for services in which users often interact
with the system through mobile devices. First, the precise P2P
advertisement dissemination model is presented. Second, the
paper proposes and explores several advertisement dissemination
schemes combined with a few payment models and compares
between them through simulations. The reported results are
encouraging for this direction and in particular identify payment
models whose payment is super-linear with the availability of
donated machines. This means that they serve as good incentives
for owners of donated machines to keep them connected to the
P2P network for long durations.

I. INTRODUCTION

P2P networks enable service providers to offer very large
scale Internet based services without incurring the tremendous
costs associated with hosting the service on their own infras-
tructure (or leasing it from a cloud provider). By definition,
such networks rely on users donating their computers to serve
as peers in the system, who provide resources such as compute
power, storage space, bandwidth, etc., to the benefit of the
system. In order to be viable, a P2P system should limit the
possibility of freeloading [1], [2] - receiving service while
not contributing at all, although, some minimal service can be
granted to convince users to contribute to get better service [3].
This is where incentive mechanisms step in. Their job is
to provide incentives for the peers to contribute resources.
Incentives can be non economical - a user can get better service
if he contributes more resources [3], [1], [2], and they can also
be economical - a user can get paid to provide resources [4],
[5], [6], [7].

An advertising mechanism can satisfy the requirements of
the latter. Using an advertising mechanism, a user can donate
resources to help spread advertisements (alongside the content)
and later the advertiser can share revenues with the users that
helped earning them.

Traditionally, each peer in the P2P network is a machine
capable of doing some computation and is associated with a
user of this P2P system. However, nowadays, mobile Internet
access is gaining popularity. More and more users connect
to the Internet and consume Web content from their mobile

devices. This poses a challenge for tit-for-tat like mechanisms,
since the device used by a user to access services is usu-
ally different than the user’s donated machine. While several
global incentive mechanisms have been devised, these tend
to either be complex and/or suffer from scalability limitations.
Consequently, we believe that P2P advertisements mechanisms
are a promising alternative for providing incentives to donate
resources in P2P networks in which much of the content is
consumed through mobile devices. To that end, our model
of the P2P network includes user donated machines that are
connected by a P2P overlay. In order to interact with the
P2P network, users use client devices (e.g., mobile phones
or tablets) to directly connect to an arbitrary peer in the P2P
network. It is important to note that the client devices are
only used to consume content and are not part of the P2P
dissemination network. This is further elaborated in section II.

This paper investigates how to implement such advertise-
ment mechanisms. Specifically, we assume that advertisements
are spread inside an existing non-dedicated P2P network.
Whenever a user accesses a certain content, the peer that served
the content will also integrate one or more advertisements from
the set of ads it currently has. The advertiser is then notified,
and in return pays both to the peer that served the ad and to
all other peers that participated in the dissemination of the ad.

Realizing this concept entails several challenges. For ex-
ample, the dissemination mechanism should disseminate the
ads to parts of the network where they are likely to be
useful, without knowing who the users that view these ads
are. Further, there is a need for a payment model that would
encourage the dissemination of ads as well as peer participation
in their dissemination. In particular, the payment obtained by
each peer should be proportional to its participation time in
the P2P network, and ideally, should be super-linear. That
is, consistently active peers should be paid much more than
sporadically active ones.

The ad dissemination mechanism should work for an
existing P2P system. Hence, it cannot modify the P2P overlay
for its needs (similar to the work done in [8]), as this may hurt
the performance of the real application running on top of the
P2P system. Instead, it must rely on the existing P2P overlay
and do the best it can given this overlay.

In this work, we present several such approaches to ad
dissemination, part of which are random and others are based
on machine learning techniques, and investigate their per-
formance in combination with several payment models. We
also develop a light weight propagation encoding scheme that
prevents peers from cheating about their participation in ad
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forwarding paths. We report on the insights gained from our
study regarding when it is preferable to use which techniques
and how the payment models affect the dissemination. Our
results indicate that indeed P2P advertisement schemes are a
promising direction for building incentives mechanisms in P2P
networks. In summary, the contributions of this work are as
follows:

• A new model of economic incentives in a P2P net-
work.

• A light weight propagation encoding scheme that
prevents peers from cheating about their participation
in ad forwarding paths.

• An algorithm to find seeding peers in a graph (elabo-
rated further).

• Insights regarding when it is preferable to use which
dissemination techniques and how the payment models
affect the dissemination.

The rest of this paper is organized as follows: An overview
of our solution appears in Section II, while Section III dis-
cusses the various payments models and dissemination strate-
gies. The dissemination tracking scheme is introduced in Sec-
tion IV, and the simulation performance results are presented
in Section V. Related work is discussed in Section VI. We
conclude with a discussion and future work in Section VII.

II. OVERVIEW

A. Goals

As indicated above, the mechanism we are looking for
should be an effective incentive for the network’s peers as well
as attractive for the advertisers. As an incentive mechanism,
it should reward the owners of donated peers proportionally
to the availability of these peers. Ideally, the reward should
be super-linear with the availability in order to encourage
keeping a donated machine connected to the network for long
periods of time. At the same time, the communication overhead
imposed by the protocols should be kept low and they should
be computationally and space efficient, in order not to interfere
with the main network activities.

As for the advertisers, the mechanism should ensure that
every ad reaches every peer that currently serves a potential
target user for the ad. In other words, the mechanism should
obtain extremely high reach rates. At the same time, the
mechanism should ensure that the maximal advertiser’s budget
is not exceeded. Also, the mechanism should account for rogue
nodes that may try to attack the system or try to increase their
revenue through fraud [9].

B. Basic Concepts

In our work, we assume the existence of a P2P network
of nodes. The nodes of the network have neighbors and can
send messages to any other node in the network. All nodes
can have client devices connected to them. A client device
provides a single user with access to the network through a
sole connection to a node of the P2P network. Each user has
specific characteristics such as: age, gender, marital status etc.
An advertiser that is interested in disseminating advertisements

Fig. 1. The entities in the system

on the P2P network must provide machines to function as
advertiser nodes. Each advertiser node is in charge of dissem-
inating to its portion of the network. Depending on the size
of the network, an advertiser must ensure that the advertiser
nodes can handle their allocated network portion sizes. The
advertiser nodes receive advertisements (consisting of bid, tar-
get audience, budget and such) from advertisers. An advertiser
node stores each advertisement until the budget allocated for
the advertisement runs out. The advertiser nodes are in charge
of disseminating the advertisements in their portion of the P2P
network, tracking impressions and clicks as well as sending
payment notices to nodes that participated in the dissemination.
The advertiser node disseminates a small message, called
ADM - advertisement dissemination message, that describes
the features of the advertisement (target audience, bid, budget
etc.). When a node decides that the advertisement is suitable
for one of its clients (by asking the client), the node requests
the actual content of the advertisement from the advertiser
node. Also, when receiving an ADM, the receiving node
decides which of the neighbors it will forward the ADM to.
When a user views or clicks on the advertisement, other nodes
that contributed to its dissemination and serving are getting
paid.

C. Advertiser Node

The advertiser node needs to disseminate the ad to all nodes
in its portion of the P2P network that are likely to post it
to their clients. Call these nodes the target nodes. However,
the advertiser node may not know a-priori who are the target
nodes, and even if it does, for scalability reasons it may not
be practical for the advertiser node to contact each of them
directly. Rather, we are looking for a solution in which the
advertiser would contact only a small set of peers, which we
call the seeding peers. These peers initiate the dissemination
process to the rest of the network.

As requests for ads and click reports flow back into the
advertiser node, it can gradually learn about target nodes as
well as growing parts of the P2P overlay in its portion of
the P2P network, and collect statistics. In particular, all our
schemes are based on rounds where each round comprises
of disseminating an ad from the advertiser node and then
obtaining feedback about its reach, impressions, and clicks.
The advertiser node maintains a round based history of seeding
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peers and for each advertisement a score is being kept, which
comprises of the click through rate (CTR), number of clicks-
per-day, etc. Using the gathered data along with the advertise-
ment properties, an advertiser node can choose seeding peers
for new advertisements. Using the principle of time locality,
the advertiser node can assume that (most) target nodes of
recent ad dissemination rounds remain target nodes for the
following rounds. Hence, intuitively, advertiser nodes pick as
seeding peers a small number of nodes whose distances to the
target nodes are minimal. From these seeding peers, the ads
will be propagated on the P2P overlay and will likely meet
their target nodes. Yet, since the advertiser node may not be
aware of all target nodes, the dissemination process described
in the next section enables discovery of additional target nodes
and is not limited to the already known ones. Recall that we
try to optimize the dissemination on the existing P2P overlay
because in our model, the advertisement mechanism is part of
an existing P2P system and thus cannot alter the P2P overlay.

The availability of the seeding peers is also recorded and
is factored in the score to give preference to nodes that are
available the most. For each impression, the node that serves
it sends a content request message to the advertiser node.
Whenever a user clicks on an ad, the user is taken to the
advertiser node that redirects him to the advertiser’s page.
If the clicks-per-day for the advertisement is too low, the
advertiser node may choose different seeding peers and send
the advertisement again, or, notify the advertiser. If the ad
budget is nearly depleted, all content requests return with a
flag that notifies the asking nodes that future requests will be
ignored and not be paid for.

1) Seeding Peer Selection: In order for an advertiser node
to select seeding peers, it creates a graph depicting the latest
state of its P2P overlay portion known to it along with the
target nodes that have served advertisements recently. From
this graph, the advertiser node selects s seeding peers, where
s is a tunable parameter. Nodes that were chosen as seeding
peers, but were unavailable are deleted from the graph for
a period of time reversely proportional to their overall avail-
ability (i.e., a node that is available 1/51 rounds will have
x50 more penalty time than a node that is available 50/51
rounds). Based on the resulting graph, the advertiser node
chooses the seeding peers as the ones minimizing some cost
function related to reaching all target nodes. We consider the
following optimization function for seeding peer selection: Min
sum of distances - select the seeding peers such that the sum
of distances from each target node to the closest seeding peer
would be minimal.

The problem of finding minimal sum of distances is some-
what similar to K-Medoids [10]. However, the K-Medoids
algorithm would minimize the distance between all the nodes
to k corresponding seeding peers, while we want to minimize
only distances from target nodes to their corresponding seeding
peers. We have implemented a variation of the K-Medoids
algorithm described in [11] to accommodate these differences,
as listed below. On each round, every advertiser node uses
the modified algorithm with several ks and chooses the k
that resulted in the lowest score; the seeding peers of this
advertisement node for that particular round are the resulting
seeding ones computed with the chosen k. In order to account
for the communication costs of nodes, in the algorithm below

we assign a high cost for messages sent between the advertiser
node and the seeding peers.

Denote n the number of nodes in the graph of the partial
P2P overlay. Let dij be the distance between every two nodes
i and j. dij is the amount of hops it takes in the graph (or
P2P overlay) to reach from i to j (or vice versa). Suppose that,
without loss of generality, the first s nodes are target nodes.
The new algorithm consists of the following steps:

1) Step 1: (Select initial seeding peers)
a) Calculate the distance between every pair of

all nodes.
b) Calculate vj for node j as follows:

vj =
n∑

i = 1

dij

s∑
l = 1

dil

, j = 1, ..., n

c) Sort vj’s in ascending order. Select k nodes
having the first k smallest values as initial
seeding peers.

d) Obtain the initial cluster result by assigning
each target node to the nearest seeding peer.

e) Calculate the sum of distances from all target
nodes to their assigned seeding peers.

2) Step 2:(Update seeding peers)
a) Find a new seeding peer of each cluster – the

node minimizing the total distance to target
nodes in its cluster.

b) Update the current seeding peer in each clus-
ter by replacing with the new seeding peer.

3) Step 3:(Assign target nodes to seeding peers)
a) Assign each target node to the nearest seed-

ing peer and obtain the cluster result.
b) Calculate the sum of distances from all target

nodes to their seeding peers. If the sum is
equal to the previous one, then return the
current seeding peer (and stop). Otherwise,
go back to Step 2.

D. Advertisement Serving

For each ADM that reaches a node with clients, the node
asks each client if the advertisement is suitable for it. The node
requests the advertisement from the corresponding advertiser
node if at least one client is suitable for the advertisement (i.e.,
the client is part of the target audience of the advertisement).
However, the node periodically removes the lowest bidding
advertisements to save space. Each time the user pulls new
content from the P2P network, advertisements with the highest
bid are chosen to be shown to the user and the respective
advertiser nodes are notified of the impression.

III. DESIGN DECISIONS

A. Payment Models

When a user views or clicks on an advertisement, the ad-
vertiser node is being notified. We employ the well known GSP
mechanism [12] to calculate the amount that the advertiser is
paying for the impression or click. All nodes participating in
the dissemination should get a part of that amount. We define
four different payment models:
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• Equal Share - we divide the amount equally among
all participating nodes. Since each participating node
performed the same amount of work (send a message
to a neighbor) all nodes should get equal share of the
reward.

• Equal Referral Share - the last (serving) node gets
half of the amount, and the rest is divided equally
between the referring nodes. Using this model, the
amount that the serving node is receiving is not
affected by the dissemination path length.

• Balloon challenge [13] - the last (serving) node gets
half of the amount, and each node before it on the
dissemination path gets half of what the next node
got. Using this model, the proximity to the serving
node is rewarded.

• Bounded share [14] - we choose an upper bound N
and pay the amount/N to the first N-1 nodes on the
dissemination path. The rest of the amount goes to the
last node. Using this model, an advertiser can limit the
length of the dissemination path and also each node
can know exactly the amount it would get for a referral
and for serving the ad.

For each of these payment models we can invoke different
payment schemes:

• Pay for all - pay for every impression. Since every
impression is profitable for the advertiser, all nodes
participating in the dissemination are getting paid for
each impression.

• Pay per useful neighbor - all nodes but the serving
node sent a single message regardless of the amount
of impressions that the advertisement generated. To
reflect this, in this scheme we pay the disseminating
nodes once for each useful neighbor. A useful neigh-
bor of a node is a neighbor that received an ADM
that eventually produced an impression (either by its
own client or by disseminating the ADM further). For
each advertisement, every node is paid only once per
useful neighbor. The serving node is still paid for
every impression since it sends messages for every
impression. The amount paid for a useful neighbor can
be according to the first impression that this neighbor
has produced.

• Pay max revenue per useful neighbor - another
option is to pay for the first impression, but if an-
other impression would have paid more for the same
neighbor, then the node gets paid for the difference. In
this scheme, each node gets paid for one impression
per neighbor - the one with the maximal revenue. This
scheme employs the same reasoning as the one before,
but does not take into account the order in which the
impressions occur.

The same schemes can be applied when paying for clicks. Pay
per useful neighbor scheme depends on the order in which
the impression happen and thus, inserts more uncertainty to
the system. Due to lack of space, in the scope of this work,
we look into Equal Share, Equal Referral Share and Balloon
Challenge models with Pay for all and Pay max revenue per

Fig. 2. Payment models example

useful neighbor schemes. As mentioned above, it seems that
Pay per useful neighbor would not add much over Pay max
revenue per useful neighbor, but is much more sensitive and
is thus not investigated further. The Bounded share model has
an extra tuning parameter. Thus, we have left its exploration
and comparison to future work.

To get a feel for the different combinations of payment
models and payment schemes, consider the scenario depicted
in Figure 2 in which a seeding peer has disseminated an ADM
with a total payment of $1, which has reached 3 target nodes
- A,B and C, each with a single connected client. Suppose
that each client has generated 10 impressions. The different
models and schemes will generate the following revenues for
the seeding peer:

• With the Pay for all payment scheme:
◦ Equal Share - the seeding peer would receive

10 ∗ 1/2 for target node C, 10 ∗ 1/3 for target
node A and 10 ∗ 1/4 for target node B.

◦ Equal Referral Share - the seeding peer would
receive 10∗1/2 for target node C, 10∗1/4 for
target node A and 10 ∗ 1/6 for target node B.

◦ Balloon challenge - the seeding peer would
receive 10∗1/4 for target node C, 10∗1/8 for
target node A and 10∗1/16 for target node B.

• With Pay max revenue per useful neighbor:
◦ Equal Share - the seeding peer would receive

1/2 for target node C and 1/3 for target node
A. No payment would be received for node B,
since target nodes A and B were reached by
the same useful neighbor, and the pay for A is
higher than the pay for B.

◦ Equal Referral Share - the seeding peer would
receive 1/2 for target node C and 1/4 for target
node A.

◦ Balloon challenge - the seeding peer would
receive 1/4 for target node C and 1/8 for target
node A.

B. Dissemination Strategies

Whenever a node receives a new ADM, the receiving
node decides to which of the neighbors it will forward the
ADM. Lacking prior studies on dissemination strategies for
our setting, we first consider the following simple strategy:

• Random with parameter r - a trivial solution is
whenever a node receives a new ADM, it sends the
message to part of the neighbors probabilistically. For
each neighbor, the probability to forward an ADM is
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r. There is an immediate tradeoff between reach and
amount of messages. The higher r is, the higher the
reach would be, but, also making the cost higher.

The above simple strategy treats all neighbors the same and
mostly serves as a reference to compare with more sophisti-
cated ones. In particular, learning strategies can inspect past
ADMs passed to a specific neighbor and decide based on the
revenue of those advertisements if the current ADM should be
passed to that neighbor. If there is not enough history for a
specific neighbor, the advertisement is passed to that neighbor
to gather information. Only recent history is considered when
making the decision whether to pass the ADM. This ensures
that only the latest network state is taken into account. We
propose the following learning strategies:

• AdPrice with parameter k - a strategy that for every
neighbor p employs machine learning techniques on
recent advertisements sent to p to predict the revenue
for the current ADM. The revenue prediction is then
compared to the average revenue of recent ADMs sent
to p. The ADM is passed if the revenue prediction
divided by the average revenue is higher than k.

• Probabilistic AdPrice with parameter prob - a
strategy that for every neighbor p employs machine
learning techniques on recent advertisements sent to p
to predict the revenue for the current ADM. The ADM
is passed with probability of prob + revenue prediction
divided by average revenue of recent ADMs sent to p
.

As an example, suppose a node p has to decide whether to
pass an ADM to a neighbor q. The node p predicts a revenue
of rev if the ADM is passed to q. The average revenue for p of
advertisements recently passed to q is avgRev. The different
strategies will operate as follows:

• Flood - will pass the ADM.

• AdPrice with parameter k - will pass the ADM if
rev/avgRev > k.

• Probabilistic AdPrice with parameter prob - will pass
the ADM with probability (rev/avgRev) + prob.

IV. DISSEMINATION TRACKING

A. The Mechanism

When a node receives an ADM, the ADM should include
the route this ADM has traveled. This information is needed for
the advertiser so he can pay all participating nodes. However,
if we simply pass this information as is, then any node on the
route can delete all preceding nodes before it from this info,
thus getting more credit for all the clicks and impressions of
that advertisement further down the line. Hence, a mechanism
is needed that will guarantee that no node would be able to
alter the route of the ADM.

To that end, the advertiser node includes in the ADM an
array, called path array, with a length of k. In each cell of the
array, the advertiser node generates a random one time pad
(OTP) that will be used to encrypt a node ID, an index of a
cell, and a bit specifying whether this cell is already used. The
advertiser marks m < k cells as used and sends the message

Fig. 3. An example of a path array

to the seeding peers specifying an index of a free cell to use
(the advertiser keeps record of this as well). Upon receiving
the ADM and an index of the cell to use, each node P does
the following:

1) Chooses randomly a free cell from the array in the
ADM for the next node to use.

2) Encrypts the ID of P and the index of the chosen
cell for the next node in the cell received from the
sending node (by XORing with the OTP in that cell).

3) Marks that cell as used.
4) Chooses neighbors to send the ADM to, and sends

them the ADM specifying the unoccupied path array
cell chosen for them.

When requesting ad content to present to the user, the node
also sends the path array to the advertiser node. The advertiser
node decrypts all occupied cells in the path array that the
advertiser node did not mark as occupied.

The cells in the path array are linked so that the advertiser
would know the order of the dissemination. Some payment
models (Balloon challenge) may require the exact order of the
node. Also, when a node is paid for an advertisement, it should
know the successor that is responsible for that payment in order
to evaluate which nodes are good candidates to disseminate the
next advertisement.

B. Security Analysis

As mentioned before, all clicks go through the advertiser
node. The advertiser node can employ click fraud detection
mechanisms [9] to filter fraudulent clicks.

A malicious node may take on different roles to try
and gain profit using the advertisement mechanism. This is
explored below.

1) Imposing as an advertiser node: All messages sent by
legitimate advertiser nodes can be signed by the advertisers
making it unfeasible to impose as an advertiser node. We
assume that there cannot be a malicious advertiser.

2) A malicious referring node: When receiving an ADM,
a node cannot know in which cell its predecessor stored its
info in since all the cells containing the path information are
encrypted. Also, the node does not know the order between its
predecessors. Since the advertiser marked m cells as used, the
pth (p > 1) node will have a 1/(p+m−1) chance of guessing
the position of its predecessor (or any other specific cell). Even
when colluding with other neighbors of the sending node, the
colluding malicious node does not gain any more information
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since the cell index chosen for all neighbors by the sending
node is the same (the cell index is encrypted in step 2).

If a node receives an ADM that the node has already
participated in its dissemination, the node can learn the path
that this ADM has traveled since it has sent it. But the node
cannot use that information to increase its revenue or reduce
the revenue of others (without hurting itself).

When receiving an ADM, a malicious node can alter the
contents of an occupied cell in the path array. In this case,
there is a slight chance that the altered cell will hold a different
legitimate ID; otherwise, the altered cell will hold non-existent
ID. If an advertiser node receives a path array with non-existent
ID, it can ask all the participating nodes to send the path array
and the ID of the node that they had sent the ADM to. That
way, the advertiser node will find out the missing ID and also
will narrow down the nodes that are suspicious of malicious
behavior to two - the first node that reported the array with an
altered cell and the node before it. Both nodes can be notified
of this so that the legitimate node could punish the malicious
one (for example by not forwarding ADMs to it). To handle
the former case (altered cell holds legitimate ID), an advertiser
node may once in a while ask the participating nodes to send
the path array and the ID of the node that they had sent the
ADM to, even if the path array holds only legitimate IDs.

If two nodes (A and B) are working together to cheat the
system, every time A receives an advertisement, A can write B
also in the array. There is a chance that B is already in the array.
In that case, the advertiser can again ask all the participating
nodes to send the path array and the ID of the node that
they had sent the ADM to, and, narrow down the nodes that
are suspicious of malicious behavior to two. Otherwise, (if B
is not present) the advertiser node can not tell that cheating
has occurred. To prevent this scenario, the path array can be
altered to hold ID of node that the ADM was received from,
ID of current node and ID of node that the ADM is sent to.
That way, a node cannot add any other IDs before or after
it in the path array at the cost of increased message size.
Another option is for A to check if B is already in the array.
This communication would require A to send a message to B
and wait for a response, while sending the ADM to B would
potentially have the same effect and use only one message. In
other words, this type of cheating costs more than following
the rules.

3) A malicious serving node: A malicious serving node
can request for advertisements even though there are no users
interested in the advertisement (or no users at all) connected
to the node. It that case, the advertiser node should notice that
the CTR of the node is marginally lower than the CTR of other
nodes and suspect the node of malicious requests. Suspected
nodes can be punished (for instance, have all their requests
rejected for some time). As mentioned before, all clicks also
go through the advertiser node, so fraudulent clicks can also
be detected.

V. PERFORMANCE EVALUATION

A. Model and Setup

The simulation of the different elements is divided into
dissemination rounds. Each round starts with the advertiser

nodes sending new ADMs to the respective seeding peers.
The bids for the ADMs are generated using information
from [15]. During the round, the ADMs are being disseminated
and impressions are being simulated (a constant amount of
impressions for the 3 highest bidding advertisements for every
online user). When the round ends, the advertising peers send
a payment notice to all nodes that are entitled to any payment
specifying the advertisement for which the node is being paid.
If the payment is for a referral, the referred node is also
specified.

In order to model churn, every node receives on start
up a number of consecutive rounds that the node should
be responsive for until it fails, called session length. These
lengths are assigned to the nodes randomly from a Weibull
distributed variable, which was reported to represent well real
P2P networks’ churn [16], [17], with parameter k = 0.5 and a
specific mean. Further, in order to avoid a situation in which
all nodes are up on the first round, every node also receives on
start up the first round in which it should fail. After a round
in which a node was in a failed state, the node rejoins the
network as a brand new node with new users, no history and
the same session length.

The various dissemination strategies, payment models and
the tracking mechanism are fully implemented in Java and the
source code is available online1. Only the messages between
the peers are simulated using the PeerSim simulator2. We
simulate a P2P network with 512 nodes and the network is
wired as a hypercube, which functions as a portion of a P2P
network and thus has only one advertiser node per advertiser.
5 such nodes act as advertiser nodes for target audiences of
various sizes. The history length of the learning strategies is
set to 20 rounds (as elaborated below).

B. Definitions

• Round reach rate is defined to be the ratio of users
receiving an advertisement out of all users that are the
target audience for that advertisement for a specific
round.

• Round miss rate is defined to be the ratio of users
not receiving an advertisement out of all users that
are the target audience for that advertisement for a
specific round.

• Average reach rate is the average round reach rate.

• Average miss rate is the average round miss rate.

• History length - the amount of latest rounds the
learning strategies take into account when making
predictions.

C. Results

a) Random r parameter tuning: We have tested the
random strategy with different r parameters. We have used the
Balloon Challenge payment model with pay for all impressions
payment scheme. As we can see from Figure 4, we get low
(< 0.05) round miss rate starting from r = 0.4. There is a

1https://sourceforge.net/projects/adflow/
2http://peersim.sourceforge.net/
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Fig. 4. Overall miss rate, ads sent, revenue and revenue per ad as a function
of the value of the r parameter of the random strategy

steady increase in the amount of advertisements sent with the
increase of r. Also, we note a decrease in the revenue per ad
with the increase of r. The total revenue is increasing with the
reach up to r = 0.3. Then, when the reach is high (> 0.9), the
total revenue decreases. This happens because the Pay for all
payment scheme pays for referrals proportionately to the path
lengths.

b) AdPrice p parameter tuning: For all values of p < 1
that we have tested, the behavior is nearly identical; it can be
seen as the second (righthand side) set of graphs in Figure 5.
That is, initially the miss rate is high and the message cost is
relatively low. Yet, as time goes by and the learning improves,
the miss rate drops to almost 0 but the message cost increases.
When p >= 1, the round miss rate becomes much higher than
with any of the other schemes we tested, more than 0.2 (graph
omitted for brevity).

c) Average miss rate versus messages sent: In Figure 5,
we analyze closely the behavior of the different dissemination
strategies. The payment model is Balloon Challenge with pay
for all impressions payment scheme. The Random strategies
send approximately the same amount of messages for every
advertisement. They also maintain the same round miss rate
with little variance from the average. The behavior of the
AdPrice strategies is cyclic. Every cycle the average amount of
messages sent per advertisement increases and the round miss
rate decreases. The size of the cycles is exactly the history
length of each strategy. However, the amount of messages
sent per advertisement increase logarithmically. As shown in
Figure 5, for every round miss rate, there are random and
learning strategies that can eventually provide that round miss
rate. Yet, in doing so, the learning strategies eventually send
fewer messages per advertisement than the random ones while
providing the same round miss rate.

d) Impact of churn: We have tested the AdPrice0.0 and
Random0.6 strategies with different churn settings. We have
ran tests with session length means of 75, 150 and 300 rounds.
Figure 6 shows that both strategies maintain their average miss
rate behavior. However, when increasing the session length
mean (decreasing the churn), the random strategy sends out
more messages per advertisement while the AdPrice strategy

sends the same amount.

e) Impact of payment model: We have tested the ran-
domStrategy0.6 with different payment models. In all payment
modes, the average miss rate and the amount of messages
sent per advertisement are similar to Balloon Challenge pay
model with pay for all payment scheme shown in Figure 5. In
Figure 7, we present an exponential fit to the revenue results.
The variance of the exponential fit is very low (0.00001-0.02)
and is lower than fitting to a linear plot (which is in turn
lower than fitting to a logarithmic plot). We can observe the
desired result of nodes receiving payment proportionally to
their availability. In particular, methods whose curve is higher
in this graph are better as incentives to participate, since with
these schemes the reward for continuous participation is higher.

As can be further seen in Figure 7, payment models that
pay for all impressions pay more for availability and their
base of the exponent is higher. Equal reference and Balloon
challenge models behave in a similar manner. Both models pay
half of the amount to the serving node. When paying for all
impressions, Equal reference model pays a little more since
Balloon challenge model does not distribute all the amount
between the disseminating nodes (1/2disseminationLength of
the pay amount is always left undistributed). However, when
paying only for maximal impression, Balloon challenge model
pays more for availability than Equal reference model. Using
the Pay max revenue for useful neighbor scheme, Equal
reference model pays every node for the shortest dissemination
path that the node participated in, while Balloon challenge pays
for the closest target node. Equal share model pays marginally
more for availability than both Balloon challenge and Equal
reference models in both payment schemes. When employing
the AdPrice strategy, the payments per availability are a bit
lower than those in Figure 7 due to the time it takes for the
strategy to reach a comparable round miss rate. Further, the
variance of the fit is larger (0.00005-0.03). This exponential
behavior is enforced by the seeding peers that take into account
nodes that are unavailable when choosing potential seeding
peers.

VI. RELATED WORK

Pub/Sub systems [18] are used to efficiently disseminate
events generated by publishers to subscribers. Yet, in our
model, clients do not explicitly subscribe to a topic or content
as done in Pub/Sub systems. Instead, when a client machine
is made aware of a disseminated ad, it can decide whether
the ad is suitable for its user or not. Further, existing Pub/Sub
systems do not track the dissemination paths since they need
not worry about paying nodes that participated in the dissemi-
nation. Similarly, known works on Pub/Sub did not investigate
payment models since it is not in their scope.

In [19] and the followup work [20], the authors disseminate
messages to target audiences. However, the dissemination is
carried out over the social links rather than the P2P links.
Also, in order to disseminate, the users share information with
their immediate social neighbors. Lastly, the authors of these
works did not simulate churn.

In [21], the authors discuss instant and location-aware
commercials. The paper presents an opportunistic gossiping
model for disseminating instant advertisements, including a
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(a) Algorithms reaching round miss rate of about 0.03

(b) Algorithms reaching round miss rate of about 0.005

(c) Algorithms reaching round miss rate of about 0.0001

Fig. 5. Round miss rate and messages sent per advertisement throughout the rounds

probability function for determining advertisement forwarding
probability at different locations. In their work, they were able
to provide high delivery rate of advertisements while keeping
the delivery time and the number of messages low. However,
[21] addresses dissemination between a network of mobile
devices. Hence, they used distance and velocity information
to optimize the gossiping model, information that cannot be
used to optimize our P2P dissemination strategies.

[22] introduces a new social gossip protocol. As a rec-
ommendation travels from one user to the next, its relevance
decreases. Once a certain hop-count limit is reached, the
relevance goes to zero and the message dissemination stops.
The adoption criterion of accepting only f +1 disjoint gossip
paths protects the network from spam recommendations. The
main contribution is a practical path verification protocol
whose computation and storage complexities are polynomial
in n. In our work, we assume that no spam advertisements are
passed (they could be signed by the advertisers). Hence, we
accept the first ad received as genuine.

A recent incentive mechanism for P2P is presented in [23].
However, their model is designed to run over any type of graph
structure that can be sub-grouped and managed by a super-
peer, which is not the case in our work.

A P2P publish/subscribe technique called Pub-2-Sub [24]
can be used to disseminate advertisements in a P2P network.

Pub-2-Sub assigns to each node a unique binary string called
a virtual address so that the virtual addresses of all the nodes
form a prefix tree. Based on this tree, each node is assigned a
unique zone partitioned from the universe of binary strings.
Then, later queries and publications are hashed to binary
strings and, based on their overlapping with the node zones,
subscription and notification paths are chosen appropriately
and deterministically. Unfortunately, Pub-2-Sub can work well
only when the network is stable and cooperative, since any
churn (peers leaving and joining) triggers a restructure of parts
of the prefix tree. Also, rogue nodes (if placed high enough in
the prefix tree) can affect many peers.

A well conceived non economical incentive mechanism
for message relaying of service requests in a P2P network
is described in [25]. In that mechanism, promised rewards
are passed along the message propagation process and after
a service provider was reached - a rewarding process is
propagated backwards on the same route. However, in our
model, the advertiser disseminates the advertisements and is
not a service provider whom the users are trying to reach.

VII. DISCUSSION

In this paper, we have provided a realistic model of a P2P
social network advertisement dissemination mechanism. We
have designed and implemented a dissemination method so
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(a) Mean session length of 75 (b) Mean session length of 150 (c) Mean session length of 300

Fig. 6. The effect of churn on round miss rate and messages sent per advertisement

(a) All impressions payment (b) Max impression payment (note Y-axis scale)

Fig. 7. Nodes’ revenue as a function of nodes’ availability for all tested payment models

that the dissemination is carried out while cheating is difficult.
We have presented a heuristic for finding a minimum sum of
distances between the seeding peers and the target nodes. We
have defined several payment models and compared between
them. We have also introduced and thoroughly tested different
dissemination methods.

When trying to make general observations about the benefit
of the learning dissemination schemes vs. the random dis-
semination ones, we can point out the following: For every
required minimal average miss rate, we can eventually achieve
this miss rate with a learning strategy while sending fewer
messages per round than the random strategy that achieves the
required average miss rate. Further, the benefit of the learning
strategies over the random ones increases as the churn rates
decrease. This is because when the network changes too fast,
by the time something is learned about the network, it is no
longer relevant. Hopefully, with a paying advertisements based
incentive mechanism, the churn rates in a P2P network will
indeed not be too high.

Finally, we have shown mechanisms that reward peer nodes
in an exponential proportion to their availability. This was an
important goal of our work, since it shows that ads can serve
as a real incentive for users to keep their donated machines
connected to the network for long periods of time.

In the future, we would like to examine different opti-
mization functions for seeding peer selection and possibly
different heuristics for each one of them. More sophisticated
gossip algorithms [26] can be used to disseminate the ads. We
would like to test how the different payment models affect
the dissemination. More work can be done to ensure the
exponential payments for availability, i.e., that nodes can take
availability into account when dissemination ADMs. Different
network overlays can also affect the mechanism. For instance,
the overlay achieved by Kademlia [27] is not a hypercube.
Hence, we would like to test the effect of the overlay on these
mechanisms. Finally, we intend to further explore the tradeoffs
between desired miss rates and communication overhead.
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The model and mechanisms described in this paper may be
extendible to other types of streams of messages disseminated
over an existing P2P overlay to interested audiences. In order
for these methods to be feasible, the disseminated message
(ADM) should always be kept small while the actual content
(advertisements in our case) can be larger since they are sent
directly from the source (advertiser node) to the client. This is
left for future work.
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