
MOLStream: A Modular Rapid Development and
Evaluation Framework for Live P2P Streaming

Roy Friedman∗ Alexander Libov∗ Ymir Vigfusson†
∗Computer Science Department †School of Computer Science & CRESS

Technion - Israel Institute of Technology Reykjavik University
Haifa 32000, Israel Reykjavik 101, Iceland

Abstract—

We present MOLSTREAM, a modular framework for rapid
development and evaluation of P2P live streaming systems.
MOLSTREAM allows P2P streaming protocols to be decomposed
into basic blocks, each associated with a standard functional
specification. By exposing structural commonalities between these
components, MOLSTREAM enables specific implementations of
these building blocks to be combined in order to devise, refine
and evaluate new P2P live streaming protocols. Our approach
offers several benefits. First, block encapsulation entails that
more advanced individual components, e.g., the overlay, can
seamlessly replace existing ones without affecting the rest of
the system. As a case study, we show how MOLSTREAM can
seamlessly substitute the overlay used by DONet/Coolstreaming,
a popular P2P live streaming implementation, for an improved
version. Second, MOLSTREAM facilitates the comparison be-
tween various protocols over local clusters or wide-area testbeds
such as PlanetLab. The combination of rapid prototyping and
minimum effort evaluation enables researchers and students to
faster understand how various design choices at different levels
impact the performance and scalability of the protocol, as shown
through several examples in this paper. MOLSTREAM is written
in Java and is freely available as an open-source project at
https://sourceforge.net/projects/molstream/.

I. INTRODUCTION

Developing a large-scale peer-to-peer (P2P) live-streaming
system is a time-consuming, complex and error-prone en-
deavor. Such systems typically require a myriad of design
decisions, such as the choice of P2P overlay structure, view
maintenance algorithms and failure recovery mechanisms,
each of which requires substantial effort to evaluate [1].
The complexity is further compounded by the wide range of
objectives and metrics used to assess a live-streaming system,
including minimizing costs, latency and bandwidth use while
maximizing the quality of experience and playback continuity.
In particular, some of these concerns are at odds with one
another.

Part of the difficulty is the lack of convenient frameworks
for rapid prototyping, deployment and evaluation of new
algorithms and ideas in real settings. Quick prototyping in
a custom simulator runs counter to the goal of real-world
evaluation or deployment, and significant effort is required
to move from simulation to a proper evaluation of a P2P
live-streaming service. Moreover, the effort invested may be
spent on parts of the system that are immaterial to proving
the efficacy of an idea, such as debugging video codecs or
calibrating third-party overlays. Evaluation typically involves
a reimplementation of the simulation protocol with improved
error handling, and often requires a plethora of metrics to be

implemented, measured and assessed on a distributed testbed
such as PlanetLab [2] or Emulab [3]. Effects that may have
been visible in a synchronous discrete event-based simulator
may fade away when effects of real testbeds (such as packet
loss, churn or asynchrony) enter the picture, invalidating sig-
nificant investment of work [4], [1].

To facilitate progress in the field of P2P live streaming, a
development and evaluation framework satisfying the follow-
ing goals is needed.

• Generality. The framework should be designed to
support a broad family of live streaming constructs,
such as interfaces for tree-based and mesh-based over-
lays, support for centralized and decentralized boot-
strap services, implementation of diverse evaluation
metrics, and so forth.

• Modularity. A P2P live streaming system should be
loosely coupled with easily replaceable components
[5]. Encapsulation enables isolated parts to be grad-
ually improved, such as optimizing the dissemination
overlay, without impact on other components being a
concern.

• Usability. Coding and implementation should be facil-
itated by natural, well-defined interfaces. The transi-
tion from simulation to large-scale experimental eval-
uation should be seamless.

• Measurability. The framework should be capable of
evaluating and reporting common performance metrics
and statistics for P2P live streaming, such as end-to-
end latency, bandwidth, playback continuity and lag.

While some frameworks, such as PeerSim [6], OverSim [7]
and PlanetSim [8], have been developed to address some
of these needs in the context of general P2P systems, they
lack evaluation capabilities and functionality specific to live
streaming applications. A domain-specific solution is required.

In this paper, we aim to disentangle the complexity of
building, improving and evaluating P2P live streaming systems
by introducing a novel framework MOLSTREAM that satisfies
the aforementioned goals. The primary contributions of this
paper are the following.

• We design and implement a modular, general frame-
work MOLSTREAM to facilitate rapid prototyping and
evaluation of P2P live-streaming systems.

• We demonstrate how several existing protocols can be
modularized with MOLSTREAM and how this modu-
larity accelerates improvements to these protocols.

• We evaluate MOLSTREAM by using it to run simu-
lations and experiments on a mash-up of components
from existing protocols under several metrics.

• We demonstrate that the same code can be evaluated
with MOLSTREAM on both PeerSim [6], a real de-
ployment over a cluster of machines as well as on
PlanetLab [2] deployment. Moreover, we show that
the results of these runs are consistent across these
environments.

Roadmap. The remainder of the paper is organized as
follows. We discuss various related works (§II), and explain
the basic terminology and assumptions (§III). We describe the
design of MOLSTREAM (§IV) and provide more detailed ex-
planation of specific components we have already implemented
(§V). We then illustrate the use and benefits of MOLSTREAM
through several case studies where we reconstruct and calibrate
known protocols using the MOLSTREAM framework (§VI),
and offer concluding thoughts (§VII).

II. RELATED WORK

The goals of MOLSTREAM of generality, modularity and
usability are shared with a number of frameworks that have
been developed for general distributed systems and algorithms.
To give specific examples, Weevil [9] is a programmable
tool to help automate evaluation of distributed systems with
focus on workload generation and experimental execution,
as opposed to the development process. The SPLAY project
[10] enables developers to specify distributed algorithms in
the Lua scripting language and experiment with them directly
on PlanetLab [2], or other testbeds. SPLAY provides libraries
to facilitate development including third-party C/C++ libraries
such as video transcoding to experiment with adaptive stream-
ing. ProtoPeer [11] is a Java-based toolkit for prototyping
and evaluating P2P systems that can transparently transition
between an event-driven simulation and a live network de-
ployment. In a similar vein, Kompics [12] is another generic
component model coded in Java that allows mash-ups of
event-driven modules to be created, but without imposing a
hierarchical component structure like ProtoPeer. To the best of
our knowledge, none of these projects have been specifically
customized, or used to develop or experiment with P2P live
streaming protocols.

A number of event-based simulators for P2P systems have
been built to ameliorate research in the field [6], [7], [8]. Never-
theless, the lack of domain-specific features for live streaming
may deter their use by researchers: A review of 287 papers
in the P2P literature showed that over 62% of simulation-
based papers used custom-made simulators, hindering the
repeatability of results [13]. MOLSTREAM interacts with these
simulators internally, such as by allowing experiments on
PeerSim [6] and PlanetLab [2], but the developer is exposed
only to a modular interface that pertains specifically to P2P
live streaming concerns.

From the literature on ad-hoc P2P networks,
MANETKit [14] is an example of a composable modular
framework for developing MANET applications. While
MANET applications are also a form of P2P systems, they
differ from Internet based P2P in the fact that MANETs
must rely on geographical proximity, forwarding, routing, and
frequent network disconnections.

To achieve realism and scalability that experiments on
academic testbeds, such as PlanetLab and Emulab [3] cannot
achieve, ShadowStream [1] allows experimental algorithms to
be embedded in production live streaming systems without
risking performance failure or playback disruptions. Whereas
MOLSTREAM is focused on quick and early development of
live streaming ideas, ShadowStream is tailored for last-stage
evaluation of modules that are nearly ready for production.

Finally, in the area of group communication, well-known
examples of modular frameworks include, e.g., Horus [15],
Ensemble [16], JGroups [17], Appia [18], QuickSilver [19]
and Quilt [20]. Neko [21] is another example that is geared
more broadly for consensus protocols and similar replication
based systems. These frameworks are designed mostly for state
machine replication in clusters and cloud systems and are
optimized for such environments. They lack many P2P specific
features and support for live streaming, which is the focus of
our work.

III. BACKGROUND AND MODEL

Broadly speaking, our work seeks to accelerate progress
in the growing area of P2P live streaming, which we now
define more concretely. A P2P live streaming system consists
of a set of end user machines that act as peers in the system
and who interact with the system through a client application
running on each of their machines. Hereafter, we use the
term peer to represent both the donated machine and its user
interchangeably.

Live streaming content is offered to the network from one
of the peers, known as the source for that stream. A peer
invokes a join operation to begin viewing a given live stream,
and subsequently starts receiving a series of chunks from the
stream. The client application at the peer may decide if and
when to play these chunks. Chunks can only be played in the
order they were generated by the source, but a peer may opt
to play only part of the chunks in a non-consecutive manner.

We assume that peers have limited bandwidth capacity,
imposed either on the upload link or total link capacity.
Capacity constraints limit the aggregate exchange of content
that can occur at each time unit between peers.

Latency is defined as the duration of time that passes from
the generation of a chunk until the chunk is played at a peer.
Streaming systems have different strategies for keeping latency
low, with some trying to minimize the average latency over all
the peers while others trying to minimize the maximal latency.

Due to capacity constraints, many P2P live streaming
systems parallelize and pipeline the delivery of chunks by
forming and maintaining an overlay that enables chunks to
be transmitted by the source to its overlay neighbors and then
ricocheted between neighboring peers in the communication
structure. The details of the overlay and forwarding protocol
are the primary features that differentiate P2P live streaming
systems. For instance, each chunk in an overlay traverses
multiple overlay hops before reaching a given peer, so the
latency of a system can also be measured in terms of hop
distances (average or maximal) from the source of the stream.

Another way to define the bandwidth constraints is to
define some cost function for every connection between two

2

peers. The cost function would define the cost of using each
connection as a function of the data transfer rate between
the two peers. Systems minimize the overall cost of the
stream dissemination over the P2P network. Typically, the cost
function is a linear function that is equal for all the connections
(then, the problem translates to the Steiner Tree Problem [22]).
This method can be utilized to minimize latencies when the
cost function is based on the latency between the two peers.

Another concern that P2P systems should worry about
is the communication overhead they impose. The overhead
can be expressed either in terms of messages or in terms of
bandwidth. The former can be computed as the average of total
number of messages received by each node versus the number
of chunks this node has received. In the latter case, we take
the total number of bytes transmitted in the system per peer
versus the total number of bytes in all the streams’ chunks.

Often, the clients are heterogeneous, i.e., every client can
have different requirements for content quality. We can define
a utility function that for each client would define the utility
for that client for every content quality that client is receiving.
Different Multiple Descriptor Coding (MDC) [23] schemes can
be used to achieve different qualities for different users.

Some clients may wish to consume the content without
interruptions at the cost of higher latency. For example, in
Coolstreaming [24] peers buffer content for 10 seconds, then
play the chunks continuously, skipping content if a chunk is
not available. They define the continuity index as the number
of chunks played out of the total possible chunks that could
be played during the session of a peer.

Real P2P systems must handle churn, characterized by the
rate at which new peers enter the system and existing peers
drop out of the system. A successful P2P system should be able
to continue its service despite churn and minimize the impact
of churn on the performance parameters mentioned above.

Finally, for the success of a P2P network, peers need to
be cooperative and execute the protocol as specified. We can
distinguish between altruistic peers, who execute the protocol
as prescribed even if they do not gain anything from doing
so, vs. selfish peers who are willing to cooperate only if
they benefit from this. In particular, peers that only consume
services from the system but do not help others are known
as free riders. Incentive mechanisms reward peers for their
contribution to the system and greatly limit the ability of
free-riders to get service from the system. This way, selfish
peers are motivated to participate in the protocol rather than
becoming free-riders. Incentives have been studied extensively
and are not at the focus of this paper.

IV. MOLSTREAM ARCHITECTURE

The MOLSTREAM framework consists of roughly 10,000
lines of Java code. As seen in Figure 1, the system architecture
is modular and consists of several generic components that we
describe below. Each component has a well-defined, minimal
interface and may be instantiated by different implementations.
The bindings to specific implementations occur at run-time
based on configuration parameters. Multiple instantiations of
the same component type may be executed concurrently within
the same system, and one may even invoke methods of the
other, as we explain later.

Figure 1. Architecture. An illustration of the components present in the
MOLSTREAM implementation and the interfaces between them.

Cross-cutting services. As shown in Figure 1, MOL-
STREAM includes several generic services which permeate all
other components. These include CONFIGURATION, TIMER,
and LOGGING. The CONFIGURATION provides access to the
systems’ configuration parameters, as we describe later in
§V-C. These parameters are made persistent to an XML config-
uration file. The TIMER component allows other components
to register a listener method called nextCycle. The listener
is invoked periodically at a frequency controlled by a configu-
ration parameter. The LOGGING service records errors, debug
information, and performance data in log files. In particular, it
records various performance counters and statistics that enable
viewing and exploration of many performance metrics through
an accompanying REPORTING application (not shown here).

Component layers. Next, we give a bottom-up description
of the main modules that form the bulk of the streaming
system. The lowest layer is the NETWORK component which
deals with all networking related issues. The component binds
to the necessary interfaces for networking, which could be an
external library such as when running the PeerSim simulator,
or the standard UNIX socket library when running on a real IP
network, as specified in the configuration file. The layer also
handles NAT and firewall traversal in Internet-wide deploy-
ments using the STUNT protocol [25]. The interface to the
NETWORK component includes a best-effort sendMessage
method. It also includes a listener (upcall) handleMessage
method as well as procedures for exploring and influencing
various network characteristics such as upload bandwidth.

The FAILUREDETECTOR component relies on the NET-
WORK component for detecting failures of other peers. It
exposes an isUp method that returns true if the peer seems
to be up and responding and false otherwise. The method
can be invoked by any other component in the system. The
accuracy of the failure detector response depends on the actual
operational environment [26].

The role of the CLUSTERING component is to divide the
network into clusters according to a metric, e.g., locality.
The programming interface includes a getSource method that
returns the identity of the stream’s source peer within the
cluster. While the current implementation of the CLUSTERING
component treats all peers as members of a single cluster,
we plan to include more sophisticated mechanisms in future

3

versions of MOLSTREAM.

Further up is the OVERLAY component, which ma-
nipulates a Neighbors object to form and maintain an
overlay. The neighbor selection process can depend on a
multitude of parameters. Incentive mechanisms that affect
the neighbor selection are implemented in this component.
Changes in the overlay are triggered by the nextCycle
and handleMessage listener methods. OVERLAY exposes
a getNeighbors method. As noted in Araneola [27] dis-
cussion below, an implementation of OVERLAY may invoke
methods of another concurrently running implementation of
OVERLAY, which removed any redundancy from our Araneola
implementation [27]. Also, there are two kinds of components
that inherit from OVERLAY: a TREEOVERLAY and GROUPED-
OVERLAY. The former adds the getParent and get-
Children methods; the latter splits neighbors into multiple
groups that can be retrieved using the getGroup method.

Next is the STREAMING component, which implements the
actual chunk dissemination protocol. Typical examples include
push, pull, and combined push-pull protocols over the overlay’s
edges, but other mechanisms can also be used. This component
also implements incentive mechanisms that affect the actual
chunk exchange between neighbors. Also, STREAMING may
use multiple concurrently running OVERLAY components, for
instance push chunks over a tree overlay while pulling missing
chunks over a mesh for robustness, as discussed for mTree-
Bone in §V-A below.

At the highest level is the CLIENTAPPLICATION compo-
nent, which is responsible for generating the stream’s chunks
at the source and for playing the stream’s chunks at other
peers. This is also where all UI and codec issues are handled
(or delegated to other modules [1], currently outside the scope
of our framework). The main interface between CLIENTAP-
PLICATION and STREAMING is through obtaining generated
chunks from a ServerVideoStream object at the source
and passing chunks to a VideoStream object as other
peers. The default implementation of CLIENTAPPLICATION
includes buffering chunks for a period of time whose length
is a configuration parameter as well as a policy whether
to wait or skip missing chunks that is also a configuration
parameter. An important role of the STREAMING component
is to decide when the playback starts. For the case when a
missing chunk is skipped, this decision actually sets the latency
of the whole playback. This could also lead to dangerous
situations when the playback has started with too short latency
and the streaming algorithm is unable to deliver the required
chunks in time before the playback deadline (for example,
a node was preempted in a tree overlay). To that end, the
STREAMING component can intentionally add delay to the
playback, increasing the continuity at the cost of increased
latency. If the CLIENTAPPLICATION waits for a chunk when it
is missing, adding delays is unnecessary. However, one missing
chunk could lead to big delays in extreme cases.

V. LIBRARIES

To facilitate the development of new P2P streaming sys-
tems, MOLSTREAM provides an extensible library of imple-
mentations for several popular protocols that tend to show up
as building blocks for other, more complicated, protocols. We
briefly discuss the main components.

Table I. LIBRARY MODULES. THE LINES OF CODE (LOC) OF THE
MOLSTREAM JAVA IMPLEMENTATION FOR EACH COMPONENT,

INCLUDING ERROR HANDLING.

Module Type LOC
Coolstreaming [24] Streaming algorithm 278
Prime [28] Streaming algorithm 305
mTreeBone [29] Streaming algorithm 35
TreePush Streaming algorithm 46
Bootstrap: Random group Overlay protocol 94
Bootstrap: Random node Overlay protocol 73
General gossip-based overlay Overlay protocol (gossip-based) 87
SCAMP [30] Overlay protocol (gossip-based) 69
BSCAMP Overlay protocol (gossip-based) 25
Prime [28] overlay Overlay protocol (group-based) 57
TreeBone [29] overlay Overlay protocol (tree-based) 298
Coolstreaming [24] overlay Overlay protocol (gossip-based) 182
Araneola [27], [31] Overlay protocol (gossip-based) 197

A. Overlay modules

The MOLSTREAM library contains a number of overlay
protocols that can be used as-is or extended as needed. The
implementation for each overlay protocol is between 25 to 298
lines of Java code, as shown in Table I.

Each overlay protocol is further subdivided into the fol-
lowing three constructs. The Bootstrap logic is responsible
for finding an initial set of peers when only a single peer
is known. The Neighborhood manager determines and han-
dles connections formed between pairs of peers. Finally, the
protocol should implement a Failure recovery mechanism to
deal with unresponsive neighbors. These are specified in the
OVERLAY template in MOLSTREAM.

SCAMP. A number of overlay algorithms have been im-
plemented and tested in MOLStream. The popular DONet/-
Coolstreaming system [24] defines an overlay protocol which
relies on an underlying overlay protocol called SCAMP [30]
to disseminate membership messages. SCAMP maintains a
unidirectional overlay designed to keep the average number
of neighbors for each node at log(n)(1 + c), for a constant
c ≥ 0, where n is the size of the network. In the MOLSTREAM
OVERLAY template, our SCAMP implementation bootstraps
each new peer by sending a random seed peer from the boot-
strap node. Whenever a connection request is received, the peer
forwards it to its neighbors along with c additional forward
copies of the connection request. Upon receiving a forwarded
connection request, the peer adds the new connection with
some probability. To recover from failures, SCAMP peers that
stop receiving messages restart the entire protocol using the
bootstrap node or one of their neighbors. We have also added
a bidirectional version of SCAMP called BSCAMP, where all
neighboring connections are mutual.

Coolstreaming. For the overlay structure itself, Cool-
streaming defines a protocol that is designed to keep a stable
amount of neighbors defined by a custom system parameter
M . As in SCAMP, a new peer begins its tenure by receiving
a seed peer (called a “deputy” [24]) from the bootstrap node.
The new peer sends a request to the seed (deputy) peer for
additional nodes. The peers then use SCAMP to disseminate
membership messages. To manage the neighborhood, peers
store a cache of known peers from the information received
from the membership messages, and bias the cache towards
storing those nodes with whom the peer has exchanged a
large number of chunks of the stream. When the number of

4

Listing 1. Sample code. General gossiping protocol implemented in
MOLSTREAM. The extract shows the main source code to implement the
Araneola membership overlay [27], except for failure handling cases.

1 @override public void handleMessage(final Message message) {
2 if (message instanceof PartialMembershipViewMessage) {
3 final List<NodeSpecificImpl> neighborsList =
4 ((PartialMembershipViewMessage) message).neighborList;
5 // add the neighbors received in the message
6 for (final NodeSpecificImpl newNeighbor : neighborsList) {
7 addNeighbor(newNeighbor);
8 }
9 addNeighbor(message.sourceId);

10 // prune random neighbors if needed
11 while (getNeighbors().size() > groupSize) {
12 final List<NodeSpecificImpl> nList =
13 new ArrayList<NodeSpecificImpl>(getNeighbors());
14 removeNeighbor(nList.get(random.nextInt(nList.size())));
15 }
16 }
17 }
18 @override public void nextCycle() {
19 super.nextCycle();
20 if (currentDelay−− == 0) {
21 currentDelay = gossipDelay;
22 final Set<NodeSpecificImpl> neighbors = getNeighbors();
23 final List<NodeSpecificImpl> neighborsList =
24 new ArrayList<NodeSpecificImpl>(neighbors);
25 for (final NodeSpecificImpl neighbor : neighbors) {
26 neighborsList.remove(neighbor);
27 Collections.shuffle(neighborsList, random);
28 final List<NodeSpecificImpl> sublist =
29 neighborsList.subList(0,
30 Math.min(amountToSend, neighborsList.size()));
31 node.send(new PartialMembershipViewMessage(getMessageTag(),
32 node.getImpl(), neighbor, sublist));
33 neighborsList.add(neighbor);
34 }
35 }
36 }

neighbors drops below M , a peer contacts a random peer in
its cache with a connection request.

Araneola membership. MOLSTREAM also implements a
scalable randomized membership protocol similar to [31] used
by Araneola [27]. Araneola’s membership service begins by
contacting a random peer group received from the bootstrap
node. Members of the service gossip once in a while with
their known neighbors, one random peer per round. Upon
receiving new neighbors, the membership service adds them all
as neighbors and then discards random neighbors if it exceeds
a maximal neighborhood size. The maximal neighbors size
is a parameter of the algorithm. When a peer has no more
live neighbors left or stops receiving messages, it restarts the
protocol using the bootstrap node.

The two main routines behind MOLSTREAM’s imple-
mentation of Araneola’s membership service are shown in
Listing 1, except failure handling code which was removed for
clarity. The figure demonstrates MOLSTREAM’s interfaces in
practice.

Araneola overlay. Araneola uses a separate overlay pro-
tocol for tracking its membership view [27]. Based on the
Araneola membership service above, Araneola maintains an
overlay that approximates a random regular graph. To bootstrap
the Araneola overlay, nodes piggyback on the membership
protocol by connecting to nodes in the current view. Nodes
continually make connections and disconnect while striving to
ensure that each node has exactly L (a configurable parameter)
or L+1 neighbors. Each node is aware of the degree of each

of its neighbors through a periodic exchange of information.
When a peer is unable to accept a new connection because its
degree is already L+1, it responds to the connect request with
a NACK along with a list of its least loaded neighbor nodes
as a hint to the connecting node. To prevent disconnections in
the overlay, Araneola nodes actively connects to other peers
when their degree drops below L.

TreeBone. The TreeBone overlay is used by mTreebone
[29]. Initially, nodes choose a random node and become its
children. A node accepts another node request only if it has
enough upload bandwidth to maintain a streaming connection
at the desired rate. Nodes with high uptime are viewed as stable
and will gradually start joining other stable nodes near to the
root of the tree. Stable nodes also perform transformations that
decrease the maximal or average depth of the tree. Should the
parent of a node fail, the peer will look for a new parent.

Prime Overlay. Finally, MOLSTREAM also supports the
overlay protocol used by the Prime system [28]. In Prime,
all neighbor nodes are defined as either parent nodes or child
nodes. The service is bootstrapped by requesting a random
group of peers from the bootstrap node and sending these peers
a connection request. A node will send a connection request
only if it has enough download bandwidth, and nodes will
accept a connection request only if they have enough upload
bandwidth. When all the parents of a peer fail, the peer restarts
the algorithm. Prime Overlay implements the groupedOverlay
interface providing a parents group and children group.

B. Streaming Protocols

Each of the topologies listed so far can be spliced with a
number of streaming protocols that have been implemented.
We will list the main ones here.

Coolstreaming. The live streaming mechanism of Cool-
streaming [24] utilizes the Coolstreaming overlay protocol
mentioned above. In this service, nodes periodically exchange
data availability information with their neighbors, retrieve un-
available data from one or more neighbors, or supply available
data to their neighbors. Each node continuously exchanges
availability bitmaps of its segment with the neighbors, and
then schedules which segment should then be fetched from
what neighbor. The scheduling heuristic first calculates the
number of potential suppliers for each segment. The algorithm
then determines the supplier of each segment by starting with
those that have only one potential supplier. When multiple
potential suppliers could be chosen, Coolstreaming selects the
one with the highest bandwidth and most ample time before
the playback deadline. Even though the implementation of
Coolstreaming in [24] relies on the Coolstreaming overlay,
notice that any other overlay protocol could have been used as
well. We will explore this further, along with the modularity
of modern streaming services, in a case study in §VI.

mTreebone. We treat mTreebone [29] as a general push-
pull protocol that uses a tree overlay protocol for disseminating
messages together with a pull protocol that has a limited
exchange window if the tree-push protocol failed to deliver
chunks nearing their deadline. To implement mTreebone as
in the original paper [29], we use TreePush with the Tree-
Bone overlay for regular message dissemination and then
use Coolstreaming with its Coolstreaming overlay as the pull

5

protocol. Note that any combination of a tree and other overlay
component could be used instead and may produce better
results for different scenarios.

TreePush. As a baseline, we implemented a simple stream-
ing protocol that uses a tree overlay called TreePush. In Tree-
Push, the source node waits for chunks to become available
and then sends chunks to each child. Every node that receives
content from its parent node immediately forwards the content
to its children.

Prime. PRIME [28] groups peers into levels based on their
shortest distance from the source. Chunk dissemination con-
sists of 2 phases: a “diffusion phase” in which all participating
peers should receive a data unit (a single description when
Multi Description Coding is used) of the chunk as fast as
possible and a “swarming phase” in which peers exchange
their data units with each other until receiving their desired
quality of the chunk. Prime requires a grouped overlay that
has a parents group and a children group (such as the Prime
Overlay component).

C. System Parameters

Having described the main libraries provided by MOL-
STREAM, we now elaborate on some of the system configura-
tion parameters.

1) Playback settings: The handling of missed chunks is
an important design decision for live streaming systems. The
system can wait for the missing chunk to arrive, possibly
for some time, or skip it and proceed to the next available
chunk. The decision affects latency and continuity and thus
the viewing experience for end users.

Another configuration option is the buffering time which
is exposed as two parameters in MOLSTREAM. The first
is the time that passes after the system starts and before
the playback is started, called serverStartup. The second is
the duration which peer wait before starting playback, called
startupBuffering. A larger serverStartup time gives additional
opportunity for the overlay to organize and stabilize before the
actual playback starts. startupBuffering increases the latency of
stream, but can improve the continuity of the playback.

2) Network interface: The framework choice is orthog-
onal to the actual implementation of the framework com-
ponents. The NETWORK component has a NetworkNode
abstract class that interfaces with the underlying network.
NetworkNode defines these methods.

• NodeSpecificImplementation getImpl()
Returns a container for the implementation of
the node. NodeSpecificImplementation
encapsulates the unique identity and address of a
node that can later be used to send messages measure
latency etc.

• boolean send(Message msg) Sends a
message. The destination NodeSpecific-
Implementation is already in the message.

• long getUploadBandwidth() Returns the up-
load bandwidth of the node in bits per second.

• long getEstimatedLatency(
NodeSpecificImplementation key)
Returns the estimated latency to a specific node.

• NodeSpecificImplementation
getServerNode() Returns the address of
the server node. Used by the clustering algorithm.

• Send Info The amount of data sent and received
as well as the amount of useful data (content) that is
sent and received from each neighbor is stored for use
by different algorithms. The data can be used for peer
selection.

More classes can be developed that extend the NetworkNode
abstract class.

3) Deployment: In addition to being designed for quick
prototyping, MOLSTREAM permits protocols to be deployed
easily in simulated environments and on real test-beds. Cur-
rently, MOLSTREAM supports both running over the PeerSim
simulator [6] as well as running over a real IP network
using UDP. The framework is extensible and support for other
simulation platforms can be added. Each simulation is fully re-
producible which simplifies the debugging of new components
compared to non-deterministic experiments over real networks.
Experiments, on the other hand, produce more realistic results
and trigger corner cases that are not always reachable by
simulation. To enhance the realism of the simulations, we
support node failures, constraints on upload bandwidth, drop
rates and latencies.

4) Bitrate and upload bandwidth: The bitrate of the stream,
upload bandwidth of the source and the upload bandwidth
distribution can be configured. The effect of these parameters
is twofold. First, some algorithms use the bitrate of the stream
together with the upload bandwidth to define the maximum
amount of neighbors or data to be sent. Second, algorithms
that do not account for the bitrate or upload bandwidth may
attempt to send too much data which may hamper latency.

5) Churn model: Churn experiments are critical to the
analysis of any P2P protocol. We have implemented several
churn models in MOLSTREAM that can be employed.

• none No churn, the number of peers remains constant
throughout the run.

• sessionLengthInterArrival Allows distributions for
the session length of nodes and the inter-arrival time
for any two new nodes to be specified. Whenever a
session ends, a node fails. The addition of new nodes
is independent of the failures.

• sessionLengthAddOnFailure A distribution is speci-
fied for the session length of a node. When a session
ends, the node fails and a new one joins at the same
instant.

• sessionLengthOffLength In this model, a distribution
for the session length of a node and a distribution of
cool-off times. After a session ends, the node fails and
a new one joins after the cool-off period.

• availabilityFile To support trace-driven simulation,
this model parses a file describing the arrival and
departure times of nodes. The nodes in the system
behave as described in the file.

• massiveChurn Under this model, a large number of
nodes will leave the system at a particular instant
(simulating a massive correlated failure) and return
later. The number of nodes and delays are parameters.

6

D. Supported Performance Metrics

MOLSTREAM logs a vast array of performance counters
and statistics during each run. Some of the counters are time
based, e.g., startup delay - the average time it takes for a new
peer to start receiving content, average latency - the average
time from the chunk generation until the chunk playback and
lag – the difference in latency between the chunks played last
and first. Other counters measure the data consumption such
as total amount of data sent by a protocol, or amount of data
sent by the nodes during each second of the playback. Last,
there are counters that are chunk related such as the number
of chunks played each second and the number of peers that
have played each chunk. Some statistics are available based
on the distance of the node from the source, for example the
average latency per hop distance.

VI. CASE STUDIES

To demonstrate the effectiveness of MOLSTREAM, we
investigate the effort taken to implement, test and deploy a
popular P2P live streaming service in the literature: Cool-
streaming [24]. The first goal is to replicate the implementation
and results from the paper by Zhang et al. and then show how
MOLSTREAM facilitates modular improvements.

1) Assumptions: In the following, we show usage examples
of MOLSTREAM for different cases. If not stated otherwise,
we have used the PeerSim simulator. If a chunk is unavailable
when the playback time is reached, the chunk is skipped. The
server startup time is set to 10 seconds. When using PeerSim,
we run each experiment five times with a different random
seed, and average the results.

2) Coolstreaming: We have implemented Coolstreaming
inside MOLSTREAM in only 278 lines of Java code plus 184
LOC for the modified SCAMP overlay used in the paper. We
experimented the implementation with a similar settings to the
ones reported in [24] and obtained similar results as in that
paper. For our deployment, we used the PeerSim simulator
with 10 to 200 nodes, with playback of 10 minutes of 500Kbps,
10 second startup buffer and no churn. In Figure 3(a), we
can see the continuity index for different network sizes and
different values of M – the overlay parameter of Coolstream-
ing. Figure 3(b) shows the overhead incurred by the differ-
ent M settings. In the graph, the playback continuity index
improves with higher M values. However, after M = 4, the
improvement becomes marginal. The graphs strongly resemble
the graphs in the Coolstreaming paper [24] as can be seen in
Figure 3, suggesting that MOLStream enabled the prototyping
of a relatively complicated protocol in less than 500 LOC of
Java in addition to facilitating experimentation.

3) Coolstreaming with different overlays: We have tested
the Coolstreaming streaming algorithm with different overlays
other than the original Coolstreaming overlay. We have used
a startup buffer of 5 seconds and a network of 200 nodes
with playback time of 12 minutes and no churn. Each node’s
upload bandwidth is set to 5.56 Mbps1, while, the server’s
upload bandwidth is set to 16.68 Mbps (3 times the average).
We have chosen the parameters of the different overlays so
that the average node degree would be as similar as possible.

1Average upload bandwidth taken from http://www.netindex.com/upload/.

Table II. CONTINUITY INDEX, PLAYBACK LATENCY AND CONTROL
OVERHEAD MEASURED FOR DIFFERENT OVERLAYS WITH THE

COOLSTREAMING STREAMING COMPONENT

Overlay Continuity
Index

Playback Latency
(ms)

Control
Overhead

Araneola (L = 3) 0.997 9893 0.008
BSCAMP 0.996 9771 0.008
Coolstreaming (M = 4) 0.97 9239 0.01
Prime 0.925 8624 0.006

Figure 2 shows the average degree as a function of the uptime
of a node. Recall that Coolstreaming overlay periodically drops
the lowest scoring partner. We have set the parameter of
Coolstreaming overlay to drop the lowest scoring neighbor
every 30 seconds. As can be seen in Figure 2, indeed there is
a drop in the Coolstreaming Overlay degree every 30 seconds.
Table II summarizes the results. In this setting, Araneola and
BSCAMP (Bidirectional SCAMP) obtain a high continuity
index. Nevertheless, their playback latency is also high. On
the other end of the spectrum, the Prime overlay has the
lowest continuity index, but obtains the lowest latency and
control overhead. Prime does not make any action after the
initial bootstrap. Prime manages to get such low latency and
overhead only because there are no failures in the setting. It
is important to note that Prime is a hierarchical group-based
overlay, whereas Coolstreaming treats all neighbors of Prime
equally and makes no distinction based on group membership.

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800

A
v
e

ra
g

e
 d

e
g

re
e

node upTime (sec)

AraneolaOverlayL03
BSCAMPOverlay1

CoolStreamingOverlayM4
PrimeOverlay

Figure 2. Average degree of Coolstreaming with different overlays

4) Araneola parameter tuning: To demonstrate how MOL-
STREAM can be used to tune the parameters of the different
algorithms, we tested Coolstreaming with the Araneola overlay
in a network of 512 nodes simulated by PeerSim. The simu-
lation length is 10 minutes. We use the sessionLengthAddOn-
Failure churn model: the session length of the nodes is log-
normally distributed with mean = 4.29 and variance = 1.28
(following Magherei et al. [32]). When a node fails, a new
one is added. Each node had an upload bandwidth of 5.56
Mbps, while the simulated stream bitrate was 450 Kbps. In
these settings, each peer can maintain roughly 12 neighbors
to which it could send one chunk of the stream each second
(5560/450 ' 12). In Figure 5(c), we see that the minimal
average latency for the Araneola algorithm is reached when
the L parameter is exactly 12. This is because Araneola tries to
achieve exactly L or L+1 neighbors for every node. The same
behavior is evident in Figure 5 which portrays the average
degree over uptime. As can be seen in Figure 5(b), Araneola
takes roughly 5 seconds to amass neighbors and reaches L in

7

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

2 3 4 5 6

C
o
n
ti
n
u
it
y
 i
n
d
e
x

Number of partners (M)

(a) MOLSTREAM Coolstreaming Playback continuity index.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

2 3 4 5 6

O
v
e
rh

e
a
d

Number of partners (M)

10 nodes
50 nodes

100 nodes
150 nodes
200 nodes

(b) MOLSTREAM Coolstreaming overhead.

(c) Original Coolstreaming continuity index graph (from [24]). (d) Original Coolstreaming overhead graph (from [24])

Figure 3. Case study of Coolstreaming. The continuity index and the overhead of a MOLSTREAM Coolstreaming implementation protocol in the MOLSTREAM
compared to the original results of the Coolstreaming protocol.

roughly 25 seconds. The degree is maintained throughout the
whole run as evidenced in Figure 5(a).

5) MOLSTREAM network framework: We have used a
cluster of 31 machines to test the network framework of MOL-
STREAM. To that end, we have ran the original Coolstreaming
streaming algorithm with the Coolstreaming overlay with the
parameter M = 4. We ran a stream of 500Kbps for 10 minutes
with no churn. We compare these results to an identical settings
using the PeerSim simulator and PlanetLab.

As shown in Figure 6, the results are comparable. The Peer-
Sim simulation has a slightly higher latency since the simulated
latencies are probably higher than the actual latencies in the
cluster. In PlanetLab the latencies are naturally higher.

We have also tested on PlanetLab with up to 180 nodes.
Figure 4 shows that the results scale up with a slight improve-
ment of the continuity index as the system grows.

6) mTreeBone transformations: We have implemented the
mTreebone algorithm [29]. In this experiment, we use the
standard Coolstreaming streaming protocol (with M = 4)
as the fallback streaming protocol of mTreebone. Also, we
simulate churn using the sessionLengthOffLength churn model.

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 0 50 100 150 200

C
o
n
ti
n
u
it
y
 i
n
d
e
x

Network size

Figure 4. Continuity index and one SD for various sizes of networks of
PlanetLab nodes

In which, the session length is exponentially distributed with
mean of 50 seconds and then the node waits a period that is
also exponentially distributed with mean of 50 seconds before
rejoining the network (as was done in [24]). We have set the
startup buffering time to one second.

We have tested the effect of the stable coefficient on the

8

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0 100 200 300 400 500 600

A
v
e

ra
g

e
 n

o
d

e
 d

e
g

re
e

Uptime (sec)

Araneola L15
Araneola L14
Araneola L13

(a) Node degree

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0 5 10 15 20 25 30

A
v
e

ra
g

e
 n

o
d

e
 d

e
g

re
e

Uptime (sec)

Araneola L15
Araneola L14
Araneola L13

(b) Node degree during warmup

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

3 4 5 6 7 8 9 10111213141516

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

m
s
)

Araneola Overlay L Parameter

(c) Average latency

Figure 5. Araneola overlay. (a) and (b) Average node degree as a function of uptime of a node (c) Average latency of different L settings.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 3 4 5 6 7 8 9 10

C
o

n
ti
n

u
it
y
 i
n

d
e

x

Startup buffering time (sec)

PeerSim simulation
Cluster

PlanetLab

(a) Continuity index

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 2 3 4 5 6 7 8 9 10

P
la

y
b

a
c
k
 l
a

te
n

c
y

Startup buffering time (sec)

PeerSim simulation
Cluster

PlanetLab

(b) Latency

Figure 6. Comparison of Coolstreaming using PeerSim simulator, Cluster and Planetlab testbed

performance of the protocol. The stable coefficient defines
when a node becomes stable, and thus able to perform trans-
formations, with a coefficient of zero implying that all nodes
are always stable and a coefficient of one implying that no
node is ever stable (except the source node). We found that
the continuity index is roughly the same for all the settings.
In contrast, higher coefficient means less overhead and lower
latency, yet above a value of 0.2 the differences are marginal.
We omit the graph due to lack of space.

VII. DISCUSSION AND CONCLUSION

We have described MOLSTREAM, an open source modular
framework for rapid prototyping, testing and performance
tuning of P2P live streaming protocols. As demonstrated,
MOLSTREAM facilitates comparing between different pro-
tocols, and in particular, between the various aspects of the
protocols such as overlay maintenance and streaming. In par-
ticular, MOLSTREAM includes a built-in logging and reporting
mechanism that records and generates statistics on common
performance metrics we have found in various research papers
on the subject, including, for instance, latency, throughput,
communication overhead, continuity index and lag. Engineers
can use our framework to establish which solution works
best for their settings, while developers of new protocols and
researchers benefit from MOLSTREAM as it enables them to

focus only on the parts they wish to study and improve.

The ability to run the same code on both a simulator
(PeerSim) and in a real deployment facilitates the transition
from a proof-of-concept simulation to a real-world experi-
ment, and from communication over emulated environments to
physical networks. PeerSim is a mature and realistic simulator
that we use by default; changing to a different or home-
brewed simulator within MOLSTREAM is simple to do as
simulation code is encapsulated behind a simple interface in
the NETWORK component.

We have shown that various known protocols have
been implemented and tested in MOLSTREAM. Relatively
little effort is required: the implementations for each of
the various components of MOLSTREAM, for example,
comprise only between 35-305 lines of Java code.
As mentioned earlier, MOLSTREAM is available at
https://sourceforge.net/projects/molstream/.

In future versions of our framework, we plan to include ad-
ditional protocols and in particular to experiment with various
novel combinations of overlay and streaming protocols. The
modularity and isolation MOLSTREAM affords further opens
doors for innovation. In particular, many protocols that appear
in the literature include or can be subjected to a wide range of
optimizations and heuristics. Some of these ideas have been

9

mentioned by other authors but often without satisfactory eval-
uation. We believe the componentization of MOLSTREAM can
help determine and separate out the performance implications
of such ideas and optimizations, enabling new insights to be
obtained in a breeze.

Acknowledgements: We would like to thank the anony-
mous reviewers for their useful comments and insights. Also,
we thank Ido Gonen and Dor Hovav for implementing the
Prime streaming and overlay components. This work is par-
tially supported by ISF grant 1247/09, grant #120032012 from
the Icelandic Research Fund, and the Technion Hasso Platner
Institute (HPI) Research School.

REFERENCES

[1] C. Tian, R. Alimi, Y. R. Yang, and D. Zhang, “ShadowStream: perfor-
mance evaluation as a capability in production Internet live streaming
networks,” in Proc. of the ACM SIGCOMM conference on applications,
technologies, architectures, and protocols for computer communication,
2012, pp. 347–358.

[2] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “Planetlab: an overlay testbed for broad-coverage
services,” ACM SIGCOMM Computer Communication Review, vol. 33,
no. 3, pp. 3–12, 2003.

[3] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” ACM SIGOPS
Operating Systems Review, vol. 36, no. SI, pp. 255–270, 2002.

[4] C. Wu, B. Li, and S. Zhao, “Diagnosing network-wide P2P live
streaming inefficiencies,” ACM Trans. Multimedia Comput. Commun.
Appl., vol. 8, no. 1S, pp. 1–19, Feb. 2012.

[5] X. Zhang and H. Hassanein, “A survey of peer-to-peer live video
streaming schemes an algorithmic perspective,” Computer Networks,
vol. 56, no. 15, pp. 3548 – 3579, 2012.

[6] A. Montresor and M. Jelasity, “PeerSim: A scalable P2P simulator,” in
Proc. of the 9th Int. Conference on Peer-to-Peer (P2P), Seattle, WA,
Sep. 2009, pp. 99–100.

[7] I. Baumgart, B. Heep, and S. Krause, “OverSim: A Flexible Overlay
Network Simulation Framework,” in IEEE Global Internet Symposium,
2007, pp. 79–84.

[8] P. Garcı́a, C. Pairot, R. Mondéjar, J. Pujol, H. Tejedor, and R. Rallo,
“Planetsim: A new overlay network simulation framework,” in Software
engineering and middleware. Springer, 2005, pp. 123–136.

[9] Y. Wang, A. Carzaniga, and A. L. Wolf, “Four enhancements to auto-
mated distributed system experimentation methods,” in Proceedings of
the 30th International Conference on Software Engineering (ICSE’30).
ACM, 2008, pp. 491–500.

[10] L. Leonini, É. Rivière, and P. Felber, “SPLAY: distributed systems
evaluation made simple (or how to turn ideas into live systems in a
breeze),” in Proc. of the 6th USENIX symposium on Networked Systems
Design and Implementation (NSDI), 2009, pp. 185–198.

[11] W. Galuba, K. Aberer, Z. Despotovic, and W. Kellerer, “ProtoPeer: a
P2P toolkit bridging the gap between simulation and live deployement,”
in Proc. of the 2nd International Conference on Simulation Tools and
Techniques, ser. Simutools. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2009, pp.
60:1–60:9.

[12] C. Arad, J. Dowling, and S. Haridi, “Building and evaluating P2P
systems using the Kompics component framework,” in IEEE 9th In-
ternational Conference on Peer-to-Peer Computing (P2P), 2009, pp.
93–94.

[13] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and
D. Chalmers, “The state of peer-to-peer simulators and simulations,”
SIGCOMM Comput. Commun. Rev., vol. 37, no. 2, pp. 95–98, Mar.
2007.

[14] R. Ramdhany, P. Grace, G. Coulson, and D. Hutchison, “MANETKit:
Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc
Routing Protocols,” in ACM/IFIP/USENIX Middleware. Springer,
2009, pp. 1–20.

[15] R. van Renesse, K. Birman, and S. Maffeis, “Horus: A Flexible Group
Communication System,” Communications of the ACM, vol. 39, no. 4,
pp. 76–83, April 1996.

[16] M. Hayden, “The Ensemble System,” Department of Computer Science,
Cornell University, Tech. Rep. TR98-1662, January 1998.

[17] “The JGroups Project,” http://www.javagroups.org.
[18] H. Miranda, A. Pinto, and L. Rodrigues, “Appia: A Flexible Protocol

Kernel Supporting Multiple Coordinated Channels,” in Proc. of the 21st
IEEE Int. Conf. on Distributed Computing Systems (ICDCS), 2001.

[19] K. Ostrowski, K. Birman, and D. Dolev, “QuickSilver Scalable Mul-
ticast (QSM),” in Proc. of the 7th IEEE International Symposium on
Network Computing and Applications (NCA), July 2008.

[20] Q. Huang, Y. Vigfusson, K. Birman, and H. Li, “Quilt: a patchwork of
multicast regions,” in Proceedings of the 4th ACM Int. Conference on
Distributed Event-Based Systems, 2010, pp. 184–195.

[21] P. Urban, X. Defago, and A. Schiper, “Neko: A single environment to
simulate and prototype distributed algorithms,” in In Proc. of the 15th
Intl Conf. on Information Networking (ICOIN), 2002, pp. 503–511.

[22] F. K. Hwang and D. S. Richards, “Steiner tree problems,” Networks,
vol. 22, no. 1, pp. 55–89, 1992.

[23] V. Goyal, “Multiple description coding: Compression meets the net-
work,” Signal Processing Magazine, IEEE, vol. 18, no. 5, pp. 74–93,
2001.

[24] X. Zhang, J. Liu, B. Li, and Y. Yum, “Coolstreaming/donet: a data-
driven overlay network for peer-to-peer live media streaming,” in 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), vol. 3, 2005, pp. 2102–2111.

[25] S. Guha and P. Francis, “An end-middle-end approach to connection
establishment,” SIGCOMM Comput. Commun. Rev., vol. 37, no. 4, pp.
193–204, Aug. 2007.

[26] T. Chandra and S. Toueg, “Unreliable Failure Detectors for Asyn-
chronous Systems,” Journal of the ACM, vol. 43, no. 4, pp. 685–722,
July 1996.

[27] R. Melamed and I. Keidar, “Araneola: A scalable reliable multicast sys-
tem for dynamic environments,” in Third IEEE International Symposium
on Network Computing and Applications (NCA)., 2004, pp. 5–14.

[28] N. Magharei and R. Rejaie, “Prime: Peer-to-peer receiver-driven mesh-
based streaming,” in Proc. of the 26th IEEE International Conference
on Computer Communications (INFOCOM), 2007, pp. 1415–1423.

[29] F. Wang, Y. Xiong, and J. Liu, “mtreebone: A hybrid tree/mesh overlay
for application-layer live video multicast,” in 27th IEEE International
Conference on Distributed Computing Systems (ICDCS), 2007, pp. 49–
49.

[30] A. Ganesh, A. Kermarrec, and L. Massoulié, “Peer-to-peer member-
ship management for gossip-based protocols,” IEEE Transactions on
Computers, vol. 52, no. 2, pp. 139–149, 2003.

[31] K. Shen, “Structure management for scalable overlay service construc-
tion,” in Proc. of NSDI, 2004, pp. 281–294.

[32] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree: A
comparative study of live p2p streaming approaches,” in Proc. of the
26th IEEE International Conference on Computer Communications
(INFOCOM). IEEE, 2007, pp. 1424–1432.

10

